4122
H.-B. Zhou et al. / Bioorg. Med. Chem. Lett. 17 (2007) 4118–4122
CBI
Ki (μM)
5. Shiau, A. K.; Barstad, D.; Loria, P. M.; Cheng, L.;
Kushner, P. J.; Agard, D. A.; Greene, G. L. Cell 1998, 95,
927.
6. Shiau, A. K.; Barstad, D.; Radek, J. T.; Meyers, M. J.;
Nettles, K. W.; Katzenellenbogen, B. S.; Katzenellenbo-
gen, J. A.; Agard, D. A.; Greene, G. L. Nat. Struct. Biol.
2002, 9, 359.
7. Pike, A. C.; Brzozowski, A. M.; Hubbard, R. E.; Bonn, T.;
Thorsell, A. G.; Engstrom, O.; Ljunggren, J.; Gustafsson,
J. A.; Carlquist, M. EMBO J. 1999, 18, 4608.
8. Pike, A. C.; Brzozowski, A. M.; Walton, J.; Hubbard, R.
E.; Thorsell, A. G.; Li, Y. L.; Gustafsson, J. A.; Carlquist,
M. Structure 2001, 9, 145.
9. Darimont, B. D.; Wagner, R. L.; Apriletti, J. W.; Stallcup,
M. R.; Kushner, P. J.; Baxter, J. D.; Fletterick, R. J.;
Yamamoto, K. R. Genes Dev. 1998, 12, 3343.
10. Shang, Y.; Brown, M. Science 2002, 295, 2465.
11. Schiff, R.; Massarweh, S.; Shou, J.; Osborne, C. K. Clin.
Cancer Res. 2003, 9, 447S.
12. Osborne, C. K.; Bardou, V.; Hopp, T. A.; Chamness, G.
C.; Hilsenbeck, S. G.; Fuqua, S. A.; Wong, J.; Allred, D.
C.; Clark, G. M.; Schiff, R. J. Natl. Cancer Inst. 2003, 95,
353.
13. Connor, C. E.; Norris, J. D.; Broadwater, G.; Willson, T.
M.; Gottardis, M. M.; Dewhirst, M. W.; McDonnell, D.
P. Cancer Res. 2001, 61, 2917.
14. Norris, J. D.; Paige, L. A.; Christensen, D. J.; Chang, C.
Y.; Huacani, M. R.; Fan, D.; Hamilton, P. T.; Fowlkes,
D. M.; McDonnell, D. P. Science 1999, 285, 744.
15. Galande, A. K.; Bramlett, K. S.; Trent, J. O.; Burris, T. P.;
Wittliff, J. L.; Spatola, A. F. Chembiochem 2005, 6, 1991.
16. Galande, A. K.; Bramlett, K. S.; Burris, T. P.; Wittliff, J.
L.; Spatola, A. F. J. Pept. Res. 2004, 63, 297.
17. Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.;
Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.;
Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. Science
2004, 303, 844.
18. Wang, J. L.; Liu, D.; Zhang, Z. J.; Shan, S.; Han, X.;
Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang,
Z. Proc. Natl. Acad Sci. U.S.A. 2000, 97, 7124.
19. Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.;
Wagner, G.; Mitchison, T.; Yuan, J. Nat. Cell Biol. 2001,
3, 173.
3000
src box II peptide
αβV peptide
pyrimidine
DMF
0.19
1100
0.91
n/a
7.1
12
2000
1000
0
18
19
21
32
7.9
17
20
38
-8
-7
-6
-5
-4
-3
-2
log M [CBI]
Figure 3. TR-FRET assay of bicyclo[2.2.2]octane CBI and SRC1
NR2, ab V peptide and pyrimidine control compounds and vehicle
activity on ERa-SRC3. Pyrimidine control is compound 12a from Ref.
24.
are in the range of 7–40 lM, indicating lower potency
than the peptide and pyrimidine control compounds.
While we are not certain how to interpret the incomplete
competition curves, they could represent stabilization by
these compounds of an ER complex that does not result
in full displacement of the Fl-peptide but binds it with
lower affinity or altered geometry, reducing but not
eliminating the FRET signal. Despite the structural
mimicry of the LXXLL peptide motif by these bicyclo-
octanes, there is also no obvious relationship between
their structures and Ki values.
Compounds that block the interaction of agonist-li-
ganded ER with CoAs could provide unique pharmaco-
logical tools for interrupting the signal transduction of
this receptor and might also allow the estrogen receptor
to circumvent certain modes of cellular resistance to con-
ventional antagonists. In this paper, we describe the
structure-inspired de novo design, synthesis, and evalua-
tion of such small molecule coactivator-binding inhibi-
tors (CBIs), based on a bicyclo[2.2.2]octane skeleton.
Despite their accurate structural mimicry of the key res-
idues involved in the ER-coactivator interaction, their
potency and effectiveness is limited. Nevertheless, this
work contributes to the proof-of-principle that effective
small molecule CBIs for the ER can be developed.
20. Issaeva, N.; Bozko, P.; Enge, M.; Protopopova, M.;
Verhoef, L. G. G. C.; Masucci, M.; Pramanik, A.;
Selivanova, G. Nat. Med. 2004, 10, 1321.
21. Parks, D. J.; LaFrance, L. V.; Calvo, R. R.; Milkiewicz,
K. L.; Gupta, V.; Lattanze, J.; Ramachandren, K.;
Carver, T. E.; Petrella, E. C.; Cummings, M. D.; Maguire,
D.; Grasberger, B. L.; Lu, T. Bioorg. Med. Chem. Lett.
2005, 15, 765.
22. Ernst, J. T.; Becerril, J.; Park, H. S.; Yin, H.; Hamilton, A.
D. Angew Chem., Int. Ed. 2003, 42, 535.
23. Kutzki, O.; Park, H. S.; Ernst, J. T.; Orner, B. P.; Yin,
H.; Hamilton, A. D. J. Am. Chem. Soc. 2002, 124,
11838.
24. Rodriguez, A. L.; Tamrazi, A.; Collins, M. L.; Katzenel-
lenbogen, J. A. J. Med. Chem. 2004, 47, 600.
25. Shao, D.; Berrodin, T. J.; Manas, E.; Hauze, D.; Powers,
R.; Bapat, A.; Gonder, D.; Winneker, R. C.; Frail, D. E.
J. Steroid Biochem. Mol. Biol. 2004, 88, 351.
Acknowledgments
The present work was supported by grants from the NIH
(PHS 5R37 DK15556). Funding for NMR and MS
instrumentation is from the Keck Foundation, NIH,
and NSF. We are grateful to Dr. Sung Hoon Kim and
Terry Moore for helpful comments, and Jaimin Amin
for conducting the coactivator-binding assays.
References and notes
26. Furuno, H.; Hanamoto, T.; Sugimoto, Y.; Inanaga, J.
Org. Lett. 2000, 2, 49.
27. Liu, W.; You, F.; Mocella, C. J.; Harman, W. D. J. Am.
Chem. Soc. 2006, 128, 1426.
28. Corey, E. J.; Shibata, T.; Lee, T. W. J. Am. Chem. Soc.
2002, 124, 3808.
29. Ishihara, K.; Kurihara, H.; Matsumoto, M.; Yamamoto,
H. J. Am. Chem. Soc. 1998, 120, 6920.
1. Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Breast
Cancer Res. 2000, 2, 335.
2. McKenna, N. J.; O’Malley, B. W. Endocrinology 2002,
143, 2461.
3. McKenna, N. J.; O’Malley, B. W. Cell 2002, 108, 465.
4. Brzozowski, A. M.; Pike, A. C.; Dauter, Z.; Hubbard, R.
E.; Bonn, T.; Engstrom, O.; Ohman, L.; Greene, G. L.;
Gustafsson, J. A.; Carlquist, M. Nature 1997, 389, 753.