Journal of the American Chemical Society
Page 4 of 5
Org. Chem. 2003, 7, 259. (e) Matyus, P.; Elias, O.; Tapolcsanyi, P.;
(b) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010,
12, 1732. (c) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc.
2011, 133, 2424. (d) Mori, K.; Sueoka, S.; Akiyama, T. Chem. Lett.
2011, 40, 1386. (e) Mori, K.; Kawasaki, T.; Akiyama, T. Org. Lett.
2012, 14, 1436. (f) Mori, K.; Kurihara, K.; Akiyama, T. Chem. Com-
mun. 2014, 50, 3729. (g) Mori, K.; Umehara, N.; Akiyama, T. Adv.
Synth. Catal. 2015, 357, 901. (h) Yoshida, T.; Mori, K. Chem. Com-
mun. 2017, 53, 4319; For an asymmetric version of internal redox re-
action catalyzed by chiral phosphoric acid, see: (i) Mori, K.; Ehara,
K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166.
(8) Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J. Am.
Chem. Soc. 2014, 136, 3744
Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2025.
(4) For selected examples of internal redox reactions, see: (a) Pastine, S.
J.; McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2005, 127, 12180.
(b) Pastine, S. J.; Sames, D. Org. Lett. 2005, 7, 5429. (c) Polonka-
Bálint, A.; Saraceno, C.; Ludányi, K.; Bényei, A.; Mátyus, P. Synlett
2008, 2846; (d) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem.
2009, 74, 419. (e) McQuaid, K. M.; Sames, D. J. Am. Chem. Soc.
2009, 131, 402. (f) Shinkai, D.; Murase, H.; Hata, T.; Urabe, H. J.
Am. Chem. Soc. 2009, 131, 3166. (g) Ruble, J. C.; Hurd, A. R.; John-
son,T. A.; Sherry, D. A.; M. Barbachyn; Toogood, R. P. L.; Bundy,
G. L.; Graber, D. R.; Kamilar, G. M. J. Am. Chem. Soc. 2009, 131,
3991. (h) Mahoney, M. J.; Moon, D. T.; Hollinger, J.; Fillion, E. Tet-
rahedron Lett. 2009, 50, 4706. (i) McQuaid, K. M.; Long, J. Z.;
Sames, D. Org. Lett. 2009, 11, 2972. (j) Vadola, P. A.; Sames, D. J.
Am. Chem. Soc. 2009, 131, 16525. (k) Zhou, G.; Zhang, J. Chem.
Commun. 2010, 46, 6593. (l) Jurberg, I. D.; Peng, B.; Wöstefeld, E.;
Wasserloos, M.; Maulide, N. Angew. Chem. Int. Ed. 2012, 51, 1950.
(m) T. Sugiishi, H. Nakamura, J. Am. Chem. Soc. 2012, 134, 2504;
(n) Han, Y.-Y.; Han, W.-Y.; Zheng, X.-M.; Yuan, W.-C. Org. Lett.
2012, 14, 4054. (o) Vadpla, P. A.; Carrea, I.; Sames, D. J. Org.
Chem. 2012, 77, 6689. (p) Gao, X.; Gaddam, V.; Altenhofer, E.; Tata,
R. R.; Cai, Z.; Yongpruksa, N. A.; Garimallaprabhakaran, K.; Harma-
ta, M. Angew. Chem. Int. Ed. 2012, 51, 7016. (q) Chen, D.-F.; Han,
Z.-Y.; He, Y.-P.; Yu, J.; Gong, L.-Z. Angew. Chem. Int. Ed. 2012, 51,
12307. (r) Shaaban, S.; Maulide, N. Synlett 2013, 1722. (s) Cera, G.;
Chiarucci, M.; Dosi, F.; Bandini, M. Adv. Synth. Catal. 2013, 335,
2227. (t) Dieckmann, A.; Richers, M. T.; Platonoova, A. Y.; Zhang,
C.; Seidel, D.; Houk, N. K. J. Org. Chem. 2013, 78, 4132. (u) Ala-
jarin, M.; Bonillo, B.; Marin-Luna, M.; Sanchez-Andrada, P.; Vidal,
A. Chem. Eur. J. 2013, 19, 16093. (v) Vidal, A.; Martin-Luna, M.;
Alajarin, M. Eur. J. Org. Chem. 2014, 878. (w) Chang, Y.-Z.; Li, M.-
L.; Zhao, W.-F.; Wen, X.; Sun, H.; Xu, Q.-L. J. Org. Chem. 2015, 80,
9620. (x) Suh, C. W.; Kwon, S. J.; Kim, D. Y. Org. Lett. 2017, 19,
1334. (y) Li, S.-S.; Zhou, L.; Wang, L.; Zhao, H.; Yu, L.; Xiao, J.
Org. Lett. 2017, 20, 138.
(5) For other types of internal redox reactions, see: (a) Pahadi, N. K;
Paley, M.; Jana, R.; Waetzig, S. R.; Tunge, J. A. J. Am. Chem. Soc.
2009, 131, 16626. (b) Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2010,
132, 1798. (c) Deb, I.; Seidel, D. Tetrahedron Lett. 2010, 51, 2945.
(d) Zhang, C.; Das, D.; Seidel, D. Chem. Sci. 2011, 2, 233. (e) Mao,
H.; Xu, R.; Wan, J.; Jiang, Sun, Z. C.; Pan, Y. Chem. Eur. J. 2010,
16, 13352. (f) Deb, I.; Das, D.; Seidel, D. Org. Lett. 2011, 13, 812.
(g) Mao, H.; Wang, S.; Yu, P.; Lv, H.; Xu, R.; Pan, Y. J. Org. Chem.
2011, 76, 1167. (h) Das, D.; Richers, M. T.; Ma, L.; Seidel, D. Org.
Lett. 2011, 13, 6584. (i) Ma, L.; Chen, W.; Seidel, D. J. Am. Chem.
Soc. 2012, 134, 15305. (j) Das, D.; Sun, A. X.; Seidel, D. Angew.
Chem. Int. Ed. 2013, 52, 3765. (k) Das, D.; Seidel, D. Org. Lett.
2013, 15, 4358. (l) Zheng, Q.-H.; Meng, W.; Jiang, G.-J.; Yu, Z.-X.
Org. Lett. 2013, 15, 5298. (m) Chen, W.; Kang, Y. K.; Wilde, R. G.;
Seidel, D. 2014, 53, 5179. (n) Richers, M. T.; Breugst, M.; Yu, A.;
Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, D. J. Am. Chem.
Soc. 2014, 136, 6123. (o) Kang, Y.; Chen, W.; Breugst, M.; Seidel,
D. J. Org. Chem. 2015, 80, 9628. (p) Ma, L.; Seidel, D. Chem. Eur. J.
2015, 21, 12908.
1
2
3
4
5
6
7
8
9
(9) For pioneering works of chiral phosphoric acid catalysis, see: (a)
Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed.
2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) For reviews on chiral phosphoric acid catalysis, see: (a) Akiyama, T.;
Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. (b) Akiyama,
T. Chem. Rev. 2007, 107, 5744. (c) Terada, M. Chem. Commun.
2008, 4097. (d) Terada, M. Synlett, 2010, 1929. (e) Zamfir, A.;
Schenker, S.; Freund, M.; Tsogoeva, S. M. Org. Biomol. Chem. 2010,
8, 5262. (f) Terada, M. Curr. Org. Chem. 2011, 15, 2227. g) Rueping,
M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev. 2011, 40, 4539. (h)
Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114,
9047. (i) Yang, Z.-P.; Zhang, W.; You, S.-L. J. Org. Chem. 2014, 79,
7785. (j) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev.
2017, 117, 10608. (k) Merad, J.; Lalli, C.; Bernadat, G.; Maury, J.;
Masson, G. Chem. Eur. J. 2018, 24, 3925.
(11) For recent reviews combining metals and Brønsted acids, see: (a)
Lacour, J.; Moraleda, D. Chem. Commun. 2009, 7073. (b) Shao, Z.
H.; Zhang, H. B. Chem. Soc. Rev. 2009, 38, 2745. (c) Rueping, M.;
Koenigs, R. M.; Atodiresei, I. Chem. Eur. J. 2010, 16, 9350. (d)
Hashmi, A. S. K.; Hubbert, C. Angew. Chem. Int. Ed. 2010, 49, 1010.
(e) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4,
603. (f) Parra, A.; Reboredo, S.; Martín Castroa, A. M.; Aleman, J.
Org. Biomol. Chem. 2012, 10, 5001. (g) Mahlau, M.; List, B. Angew.
Chem. Int. Ed. 2013, 52, 518. (h) Brak, K.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2013, 52, 534. (i) Chen, D.-F.; Han, Z.-Y.; Zhou, X.-
L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.
(12) Asymmetric reaction with chiral magnesium bisphosphate, see: (a)
Ingle, G. K.; Liang, Y.; Mormino, M.; Li, G.; Fronczek, F. R.; Antil-
la, J. C. Org. Lett. 2011, 13, 2054. (b) Larson, S. E.; Li, G.; Rowland,
G. B.; Junge, D.; Huang, R.; Woodcock, H. L.; Antilla, J. C. Org. Lett.
2011, 13, 2188. (c) Li, G.; Liang, T.; Wojtas, L.; Antilla, J. C. Angew.
Chem. Int. Ed. 2013, 52, 4628. (d) Sala, G. D. Tetrahedron 2013, 69,
50. See also, ref 6f,g.
(13) Only two diastereomers were observed in this reaction even though 5
have three stereogenic centers.
1
(14) Judged by H NMR analysis, relative stereochemistries of the two
diastereomers of 5 were determined to be cis and trans in the ring
junction (JH-H = 10.8 Hz in 5a, JH-H = 3.2 Hz in 5b). These results
further support our proposal, in which stereoselectivity was mostly
determined at the first hydride shift/cyclization process.
(6) For examples of enantioselective internal redox reactions, see: (a)
Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2009,
131, 13226. (b) Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem.
Soc. 2010, 132, 11847. (c) Cao, W.; Liu, X.; Wang, W.; Lin, L.;
Feng, X. Org. Lett. 2011, 13, 600. (d) Zhou, G.; Liu, F.; Zhang, J.
Chem. Eur. J. 2011, 17, 3101. (e) He, Y.-P.; Du, Y.-L.; Luo, S.-W.;
Gong, L. Z. Tetrahedron Lett. 2011, 52, 7064. (f) Chen, L.; Zhang,
L.; Lv, Z.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2012, 18, 8891. (g)
Zhang, L.; Chen, L.; Lv, Z.; Cheng, J.-P.; Luo, S. Chem. Asian J.
2012, 7, 2569. (h) Jiao, Z.-W.; Zhang, S.-Y.; He, C.; Tu, Y.-Q.;
Wang, S.-H.; Zhang, F.-M.; Zhang, Y.-Q.; Li, H. Angew. Chem. Int.
Ed. 2012, 51, 8811. (i) Kang, Y. K.; Kim, D. Y. Adv. Synth. Catal.
2013, 355, 3131. (j) Suh, C. W.; Woo, S. B.; Kim, D. Y. Asian J.
Org. Chem 2014, 3, 399. (k) Kang, Y. K.; Kim, D. Y. Chem. Com-
mun. 2014, 50, 222. (l) Suh, C. W.; Kim, D. Y. Org. Lett. 2014, 16,
5374. (m) Yu, J.; Li, N.; Chen, D.-F.; Luo, S.-W. Tetrahedron Lett.
2014, 55, 2859. (n) Cao, W.; Liu, X.; Guo, J.; Lin, L.; Feng, X.
Chem. Eur. J. 2015, 21, 1632. See also, ref 7i.
(15) Computational details are shown in supporting information.
(16) Selected examples of theoretical study of chiral phosphoric acid
catalysis: (a) Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. J. Am.
Chem. Soc. 2007, 129, 6756. (b) Simón, L.; Goodman, J. M. J. Am.
Chem. Soc. 2008, 130, 8741. (c) Marcelli, T.; Hammar P.; Himo, F.
Chem. Eur. J. 2008, 14, 8562. (d) Yamanaka, M.; Hirata, T. J. Org.
Chem. 2009, 74, 3266. (e) Simón, L.; Goodman, J. M. J. Org. Chem.
2011, 76, 1775. (f) Mori, K.; Ichikawa, Y.; Kobayashi, M.; Shibata,
Y.; Yamanaka, M.; Akiyama,T. J. Am. Chem. Soc. 2013, 135, 3964.
(g) Reid, J. P.; Goodman, J. M. J. Am. Chem. Soc. 2016, 138, 7910.
(h) Champagne, P. A.; Houk, K. N. J. Am. Chem. Soc. 2016, 138,
12356. (i) Li, F.; Korenaga, T.; Nakanishi, T.; Kikuchi, J.; Terada, M.
J. Am. Chem. Soc. 2018, 140, 2629. See also, ref 6f,g.
(7) For the internal redox reaction developed by our group, see: (a) Mori,
K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524.
ACS Paragon Plus Environment