Evaluation of the o-Hydroxycinnamic Platform
A R T I C L E S
(E)-3-(3,5-Dibromo-2,4-dihydroxy-phenyl)-2-methyl Acrylic Acid
Ethyl Ester (E′c). Yield, 35%; mp 112-114 °C. H NMR (ppm, 250
MHz, CDCl3, 298 K) δ: 7.67 (s, 1 H), 7.38 (s, 1 H), 5.99 (s, 1 H),
5.88 (s, 1 H), 4.27 (q, 2 H, J ) 7.1 Hz), 2.03 (d, 3 H, J ) 1.4 Hz),
1.34 (t, 3 H, J ) 7.2 Hz). C NMR (ppm, 62.8 MHz, CDCl3, 298 K) δ:
168.2, 151.1, 149.7, 132.0, 131.3, 129.7, 117.4, 100.1, 99.0, 61.0, 14.2
(2C). Anal. Calcd (%) for C12H12O4Br2 (380.03): C, 37.93; H, 3.18.
The o-hydroxycinnamic caging group appears particularly
attractive in biological applications that do require precise but
not necessarily “fast’’ two-photon excitation-induced substrate
release. In particular, our results suggest that quantitative control
of substrate delivery could be achieved in vivo at the second
time scale by recording the fluorescence emission from the
coumarin F coproduct that reports on the concentration in
photoreleased substrate.
Found: C, 37.70; H, 3.10. Mass spectrometry, MS (CI, CH4): m/z 381
79
[M + 1]. MS (CI, CH4, HR): m/z 380.9161 (calcd mass for C12H13O4
-
Br81Br, 380.9153).
Experimental Section
(E)-3-(4-Diethylamino-2-hydroxy-phenyl)-2-methyl Acrylic Acid
Ethyl Ester (E′d).25 Yield, 70%; mp 96-97 °C. H NMR (ppm, 250
MHz, CDCl3, 298 K) δ: 7.71 (s, 1 H), 7.12 (d, 1 H, J ) 8.2 Hz), 6.21
(dd, 1 H, J1 )8.7 Hz, J2 )2.4 Hz), 6.1 (d, 1 H, J ) 2.4 Hz), 5.3 (s, 1
H), 4.18 (q, 2 H, J ) 7.1 Hz), 3.27 (q, 4 H, J ) 7.1 Hz), 2.01 (s, 3 H),
1.26 (t, 3 H, J ) 7.17 Hz), 1.1 (t, 6 H, J ) 7.1 Hz). 13C NMR (ppm,
62.8 MHz, CDCl3, 298 K) δ 169.3, 155.6, 149.6, 133.6, 131.2, 125.1,
110.2, 104.3, 98.0, 60.7, 44.4 (2C), 14.4 (2C), 12.7 (2C). Anal. Calcd
(%) for C16H23O3N (277.36): C, 69.28; N, 5.05; H, 3.18. Found: C,
69.14; N, 5.07; H, 8.65. Mass spectrometry, MS (CI, CH4): m/z 278
[M + 1]. MS (CI, CH4, HR): m/z 278.1761 (calcd mass for C16H24O3N,
278.1756).
Syntheses. 2,4-Dihydroxybenzaldehyde, 2-hydroxy-4-methoxybenz-
aldehyde, 4-diethylamino-2-hydroxybenzaldehyde, 2-hydroxy-5-ni-
trobenzaldehyde, 2-hydroxy-4,6-dimethoxybenzaldehyde, carboethoxy-
ethylidenetriphenylphosphorane and carboethoxymethylidenetriphenyl-
phosphorane were commercially available. The syntheses of the other
starting substituted benzaldehydes and of the 1-carboxymethylidene
triphenylphosphorane are reported in Supporting Information.
General Procedures. The commercially available chemicals were
used without further purification. Anhydrous solvents were freshly
distilled before use. Column chromatography (CC) used silica gel 60
(0.040-0.063 mm) from Merck; analytical and thin layer chromatog-
raphy (TLC) was performed with Merck silica gel 60 F254 precoated
plates, detection by UV (254 nm); melting point used a Bu¨chi 510. 1H
NMR and 13C NMR spectra were obtained by AM 250 SY Bruker.
Chemical shifts (δ) in ppm related to protonated solvent as internal
reference: (1H) CHCl3 in CDCl3, 7.26 ppm; CHD2COCD3 in CD3-
(E)-3-(2-Hydroxy-4,6-dimethoxy-phenyl)-2-methyl Acrylic Acid
1
Ethyl Ester (E′e). Yield, 30%; mp 99 °C. H NMR (ppm, 250 MHz,
CDCl3, 298 K) δ: 7.49 (d, 1 H, J ) 1.1 Hz), 6.12 (dd, 2 H, J )2.1
Hz, J )1.1 Hz), 4.93 (s, 1 H), 4.27 (q, 2 H, J ) 7.1 Hz), 3.79 (s, 3 H),
3.78 (s, 3 H), 1.57 (s, 3 H), 1.34 (t, 3 H, J ) 7.1 Hz). 13C NMR (ppm,
62.8 MHz, CDCl3, 298 K) δ: 168.1, 161.8, 158.8, 154.5, 131.5, 131.3,
104.6, 93.2, 91.3, 60.9, 55.6, 55.4, 15.0, 14.3. Anal. Calcd (%) for
C14H18O5 (266.12): C, 63.15; H, 6.81. Found : C, 63.14; H, 6.72. Mass
spectrometry, MS (CI, NH3): m/z 367 [M + 1].
(E)-3-(2-Hydroxy-4-methoxyphenyl)-2-methyl Acrylic Acid Ethyl
Ester (E′f). Yield, 60%; mp 99 °C. 1H NMR (ppm, 250 MHz, CDCl3,
298 K) δ: 7.73 (s, 1 H), 7.11 (d, 1 H, J ) 9.2 Hz), 6.8 (bs, 1 H), 6.42
(s, 1 H), 6.39 (d, 1 H, J ) 9.2 Hz), 4.17 (q, 2 H, J ) 7.2 Hz), 3.68 (s,
3 H), 1.96 (s, 3 H), 1.24 (t, 3 H, J ) 7.1 Hz). 13C NMR (ppm, 62.8
MHz, CDCl3, 298 K) δ: 169.4, 161.1, 155.7, 134.2, 130.8, 127.4, 115.7,
106.1, 101.5, 61.0, 55.2, 14.2, 14.1. Anal. Calcd (%) for C13H16O4
(236.10): C, 66.09; H, 6.83. Found: C, 66.03; H, 6.78. Mass
spectrometry, MS (CI, NH3): m/z 237 [M + 1].
13
COCD3, 2.20 ppm; CHD2SOCD3 in CD3SOCD3, 2.54 ppm; (13C)
-
CDCl3 in CDCl3, 77.0 ppm; 13CD3COCD3 in CD3COCD3, 29.8 ppm;
13CD3SOCD3 in CD3SOCD3, 39.6 ppm. Coupling constants J are given
in Hz. Mass spectrometry (chemical ionization and high resolution with
NH3 or CH4) was performed at the Service de Spectrome´trie de masse
de l’ENS. Microanalyses were obtained from the Service de Mi-
croanalyses de l’Universite´ Pierre et Marie Curie, Paris.
General Procedure for Wittig Reactions.25 A mixture of aldehyde
and carboethoxyethylidenetriphenylphosphorane or carboethoxy-
methylidenetriphenylphosphorane (1.5 equiv) in toluene (10 mL for 1
mmol of aldehyde) was heated at 60 °C under argon upon protecting
from light. The course of the reaction was followed by TLC (cyclo-
hexane/AcOEt). After 2 to 4 h, the reaction was completed. After
cooling to room temperature, toluene was removed in a vacuum. The
crude residue was purified by flash chromatography on silica gel
(mixtures of ethyl acetate and cyclohexane as eluent) to yield the desired
cinnamate in high yield (from 60 to 90%; about 10% of the coumarin
resulting from thermal trans-cis isomerization followed by lactonization
was formed during the reaction).
(E)-3-(2-Hydroxy-naphtalen-1-yl)-2-methyl Acrylic Acid Ethyl
1
Ester (E′g). Yield, 80%; mp 94-96 °C. H NMR (ppm, 250 MHz,
CDCl3, 298 K) δ: 7.9 (s, 1 H), 7.7 (m, 3 H), 7.47-7.21 (m, 3 H), 5.6
(bs, H), 4.35 (q, 2 H, J ) 7.0 Hz), 1.87 (d, 3 H, J ) 0.9 Hz), 1.40 (t,
3 H, J ) 7.3 Hz). 13C NMR (ppm, 62.8 MHz, CDCl3, 298 K) δ: 167.6,
150.0, 134.5, 132.8, 132.1, 130.2, 128.7, 128.3, 126.8, 123.9, 123.7,
117.6, 114.6, 61.2, 14.6, 14.3. Anal. Calcd (%) for C16H16O3 (256):
C, 75.00; H, 6.25. Found: C, 74.95; H, 6.28. Mass spectrometry, MS
(CI, CH4): m/z 257 [M + 1]. MS (CI, CH4, HR): m/z 257.1176 (calcd
mass for C16H17O3, 257.1178).
(E)-3-(2,4-Dihydroxyphenyl)-2-methyl Acrylic Acid Ethyl Ester
1
(E′a). Yield. 60%; mp 121-122 °C. H NMR (ppm, 250 MHz, CD3-
COCD3, 298 K) δ: 8.63 (bs, 1 H), 7.9 (s, 1 H), 7.27 (d, 1 H, J ) 8.4
Hz), 6.5 (d, 1 H, J ) 2.3 Hz), 6.45 (dd, 1 H, J ) 8.4 Hz, J ) 2.3 Hz),
4.22 (q, 2 H, J ) 7 Hz), 2.07 (s, 3 H), 1.31 (t, 3 H, J ) 7 Hz). 13C
NMR (ppm, 62.8 MHz, CD3COCD3, 298 K) δ: 168.6, 159.7, 157.7,
134.5, 131.5, 125.1, 115.2, 107.3, 102.9, 60.3, 14.1, 14.0. Anal. Calcd
(%) for C12H14O4 (222.09): C, 64.85; H, 6.35. Found: C, 64.63; H,
6.31. Mass spectrometry, MS (CI, NH3): m/z 223 [M + 1].
(E)-3-(6-Hydroxy-benzo(1,3)dioxo-5-yl)-2-methyl Acrylic Acid
Ethyl Ester (E′b). Yield, 70%; mp 113-114 °C. 1H NMR (ppm, 250
MHz, CDCl3, 298 K) δ: 7.65 (s, 1 H), 6.70 (s, 1 H), 6.47 (s, 1 H),
5.94 (s, 1 H), 5.02 (s, 2 H) 4.27 (q, 2 H, J ) 7.1 Hz), 2.02 (s, 3 H),
1.34 (t, 3 H, J ) 7.1 Hz). 13C NMR (ppm, 62.8 MHz, CD3COCD3,
298 K) δ: 168.9, 125.5, 149.7, 141.6, 135.0, 126.5, 115.7, 109.3, 102.3,
98.6, 61.0, 14.7, 14.5. Anal. Calcd (%) for C13H14O5 (250): C, 62.39;
H, 5.64. Found: C, 62.27; H, 5.59. Mass spectrometry, MS (CI, CH4):
m/z 251 [M + 1]. MS (CI, CH4, HR): m/z 251.0924 (calcd mass for
C13H15O5, 251.0919).
(E)-3-(2-Hydroxy-5-nitrophenyl)-2-methyl Acrylic Acid Ethyl
Ester (E′h). Yield, 50%; mp 115-115.5 °C. 1H NMR (ppm, 250 MHz,
CDCl3, 298 K) δ: 8.15 (m, 2 H), 7.63 (s, 1 H), 6.99 (d, 1 H, J ) 9.2
Hz), 6.10 (s, 1 H), 4.31 (q, 2 H, J ) 7.1 Hz), 2.03 (d, 3 H, J ) 1.2
Hz), 1.37 (t, 3 H, J ) 7.2 Hz). 13C NMR (ppm, 62.8 MHz, CDCl3, 298
K) δ: 169.1, 160.1, 140.9, 132.4, 131.9, 126.1, 125.9, 123.3, 116.1,
61.8, 14.2 (2C). Anal. Calcd (%) for C12H13NO5 (251): C, 57.37; N,
5.58; H, 5.22. Found: C, 57.45; N, 6.58; H, 5.30. Mass spectrometry,
MS (CI, CH4): m/z 252 [M + 1].
(E)-3-(2,4-Dihydroxyphenyl) Acrylic Acid Ethyl Ester (Ea). Yield,
70%; mp 193-195 °C. 1H NMR (ppm, 250 MHz, CD3SOCD3, 298 K)
δ: 10.12 (bs, 1 H), 9.9 (bs, 1 H), 7.78 (d, 1 H, J ) 16 Hz), 7.42 (d,
1 H, J ) 8.6 Hz), 6.4-6.35 (m, 2 H), 6.28 (dd, 1 H, J ) 8.4 Hz,
J ) 2.1 Hz), 4.15 (q, 2 H, J ) 7.2 Hz), 1.24 (t, 3 H, J ) 7.2 Hz). 13
C
NMR (ppm, 62.8 MHz, CD3SOCD3, 298 K) δ: 167.1, 160.9, 158.5,
9
J. AM. CHEM. SOC. VOL. 129, NO. 32, 2007 9995