10.1002/anie.201703178
Angewandte Chemie International Edition
COMMUNICATION
Deschamps, J. F. Anderson, X. Liao, J. M. Cook, J. Org. Chem. 2003,
68, 7565-7581; e) Y.-C. Shen, C.-Y. Chen, P.-W. Hsieh, C.-Y. Duh, Y.-
M. Lin, C.-L. Ko, Chem. Pharm. Bull. 2005, 53, 32-36; f) X. Liao, H.
Zhou, J. Yu, J. M. Cook, J. Org. Chem. 2006, 71, 8884-8890; g) J. Ma,
W. Yin, H. Zhou, J. M. Cook, Org. Lett. 2007, 9, 3491-3494.
stereochemical integrity and high diastereoselectivity (45% yield,
8:1 d.r., 82% ee, eq b).[11] The spirooxindole is an intriguing
structural motif in many alkaloids, natural products and
pharmaceuticals.[12] Finally, the reduction of product 3a was
successfully carried out with NaBH4 as the reductive reagent,[9]
affording (+)-Deplancheine with high E/Z selectivity and excellent
enantioselectivity (81% yield, E/Z = 13:1, 93% ee, eq c).
[2]
a) A. Pictet, T. Spengler, Ber. Dtsch. Chem. Ges. 1911, 44, 2030-2036;
For selected reviews, see: b) E. D. Cox, J. M. Cook, Chem. Rev. 1995,
95, 1797-1842; c) M. Chrzanowska, M. D. Rozwadowska, Chem. Rev.
2004, 104, 3341-3370; d) S. E. O’Connor, J. J. Maresh, Nat. Prod. Rep.
2006, 23, 532-547; e) C. Ingallina, I. D’Acquarica, G. D. Monache, F.
Ghirga, D. Quaglio, P. Ghirga, S. Berardozzi, V. Markovic, B. Botta,
Curr. Pharm. Des. 2016, 22, 1808-1850.
[3]
[4]
For selected reviews, see: a) S.-L. You, Q. Cai, M. Zeng, Chem. Soc.
Rev. 2009, 38, 2190-2201; b) M. Lorenz, M. L. Van Linn, J. M. Cook,
Curr. Org. Synth. 2010, 7, 189-223; c) J. Stӧckigt, A. P. Antonchick, F.
Wu, H. Waldmann, Angew. Chem., Int. Ed. 2011, 50, 8538-8564;
Angew. Chem. 2011, 123, 8692-8719; d) A. Moyano, R. Rios, Chem.
Rev. 2011, 111, 4703-4832.
For pioneering studies, see: a) M. S. Taylor, E. N. Jacobsen, J. Am.
Chem. Soc. 2004, 126, 10558-10559; b) J. Seayad, A. M. Seayad, B.
List, J. Am. Chem. Soc. 2006, 128, 1086-1087; c) I. T. Raheem, P. S.
Thiara, E. A. Peterson, E. N. Jacobsen, J. Am. Chem. Soc. 2007, 129,
13404-13405; d) M. J. Wanner, R. N. S. van der Haas, K. R. de Cuba, J.
H. van Maarseveen, H. Hiemstra, Angew. Chem., Int. Ed. 2007, 46,
7485-7487; Angew. Chem. 2007, 119, 7629-7631; For selected recent
examples, see: e) D. Huang, F. Xu, X. Lin, Y. Wang, Chem.-Eur. J.
2012, 18, 3148-3152; f) Q. Cai, X.-W. Liang, S.-G. Wang, J.-W. Zhang,
X. Zhang, S.-L. You, Org. Lett. 2012, 14, 5022-5025; g) Q. Cai, X.-W.
Liang, S.-G. Wang, S.-L. You, Org. Biomol. Chem. 2013, 11, 1602-
1605; h) Y. Tan, H.-L. Luan, H. Lin, X.-W. Sun, X.-D. Yang, H.-Q. Dong,
G.-Q. Lin, Chem. Commun. 2014, 50, 10027-10030; i) Y.-S. Fan, Y.-J.
1015; k) E. Manoni, A. Gualandi, L. Mengozzi, M. Bandini, P. G. Cozzi,
n) V. Gobé, X. Guinchard, Chem.-Eur. J. 2015, 21, 8511-8520; o) J.
Kayhan, M. J. Wanner, S. Ingemann, J. H. van Maarseveen, H.
Hiemstra, Eur. J. Org. Chem. 2016, 3705-3708; p) C. Piemontesi, Q.
Wang, J. Zhu. J. Am. Chem. Soc. 2016, 138, 11148-11151.
Scheme 3. Transformations of the products.
In summary, we have developed a highly efficient synthesis of
enantioenriched tetrahydro-β-carbolines via chiral phosphoric
acid-catalyzed
Pictet-Spengler
reaction
of
indolyl
dihydropyridines. Different from previous enantioselective Pictet-
Spengler reactions utilizing tryptamines and carbonyl
compounds as substrates, the current protocol employs
substrates readily prepared from simple indoles and pyridines.
Under mild conditions, these reactions proceeded smoothly
affording chiral tetrahydro-β-carbolines in good to excellent
yields (up to 96%) and high enantioselectivity (up to 99% ee). A
concise formal synthesis of Tangutorine and total synthesis of
Deplancheine further demonstrated the synthetic utility of this
newly developed methodology.
[5]
a) E. Ichikawa, M. Suzuki, K. Yabu, M. Albert, M. Kanai, M. Shibasaki, J.
Am. Chem. Soc. 2004, 126, 11808-11809; b) Z. Sun, S. Yu, Z. Ding, D.
Ma, J. Am. Chem. Soc. 2007, 129, 9300-9301; c) D. A. Black, R. E.
Beveridge, B. A. Arndtsen, J. Org. Chem. 2008, 73, 1906-1910; (d) M.
Á. Fernández-Ibáňez, B. Maciá, M. G. Pizzuti, A. J. Minnaard, B. L.
Feringa, Angew. Chem., Int. Ed. 2009, 48, 9339-9341; Angew. Chem.
2009, 121, 9503-9505; e) N. Christian, S. Aly, K. Belyk, J. Am. Chem.
Soc. 2011, 133, 2878-2880; f) Z.-P. Yang, Q.-F. Wu, S.-L. You, Angew.
Chem., Int. Ed. 2014, 53, 6986-6989; Angew. Chem. 2014, 126, 7106-
7109; g) Z.-P. Yang, Q.-F. Wu, W. Shao, S.-L. You, J. Am. Chem.
Soc. 2015, 137, 15899-15906.
Acknowledgements
We thank the National Key R&D Program of China
(2016YFA0202900), National Basic Research Program of China
(2015CB856600), the NSFC (21332009, 21361140373,
21421091), Program of Shanghai Subject Chief Scientist
(16XD1404300), and the CAS (XDB20000000, QYZDY-SSW-
SLH012) for generous financial support.
[6]
S.-G. Wang, S.-L. You, Angew. Chem., Int. Ed. 2014, 53, 2194-2197;
Angew. Chem. 2014, 126, 2226-2229.
[7]
[8]
M. Lounasmaa, M. Puhakka, Acta Chem. Scand. B 1978, 32, 77-78.
For selected reviews on chiral phosphoric acids, see: a) T. Akiyama,
Chem. Rev. 2007, 107, 5744-5758; b) M. Terada, Chem. Commun.
2008, 4097-4112; c) M. Terada, Synthesis 2010, 12, 1929-1982; d) J.
Yu, F. Shi, L.-Z. Gong, Acc. Chem. Res. 2011, 44, 1156-1171; e) M.
Rueping, A. Kuenkel, I. Atodiresei, Chem. Soc. Rev. 2011, 40, 4539-
4549; f) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014,
114, 9047-9153; For pioneering contributions, see: g) D. Uraguchi, M.
Terada, J. Am. Chem. Soc. 2004, 126, 5356-5357; h) T. Akiyama, J.
Itoh, K. Yokota, K. Fuchibe, Angew. Chem., Int. Ed. 2004, 43, 1566-
1568; Angew. Chem. 2004, 116, 1592-1594; For selected examples on
spinol-derived phosphoric acid catalysis: i) I. Čorić, S. Müller, B. List, J.
Keywords: asymmetric catalysis • chiral phosphoric acid •
dearomatization • organocatalysis • Pictet-Spengler • tetrahydro-
β-carboline
[1]
For reviews, see: a) M. Somei, F. Yamada, Nat. Prod. Rep. 2004, 21,
278-311; b) T. Kawasaki, K. Higuchi, Nat. Prod. Rep. 2005, 22, 761-
793; c) S. E. O’Connor, J. J. Maresh, Nat. Prod. Rep. 2006, 23, 532-
547; For selected examples, see: d) J. Yu, T. Wang, X. Liu, J.
This article is protected by copyright. All rights reserved.