Communications
j) J. L. Bennett, P. T. Wolczanski, J. Am. Chem. Soc. 1994, 116,
2197; k) C. P. Schaller, J. B. Bonanno, P. T. Wolczanski, J. Am.
Chem. Soc. 1994, 116, 2179; l) C. P. Schaller, C. C. Cummins, P. T.
Wolczanski, J. Am. Chem. Soc. 1996, 118, 591; m) J. L. Bennett,
P. T. Wolczanski, J. Am. Chem. Soc. 1997, 119, 10696; n) D. F.
Schafer, II, P. T. Wolczanski, J. Am. Chem. Soc. 1998, 120, 4881;
o) P. Royo, J. Sanchez-Nieves, J. Organomet. Chem. 2000, 597,
61.
stable products. The unusually high stability of 3e may be
attributed to electronic stabilization imparted by the arene
substitutents.
In summary, mixed-ring Cp*Cp complex 1 provided the
first example of the isolation of kinetic product ratios in sp2
3
À
=
and sp C H bond activation with Group 4 M NR complexes.
This feature of the Cp*Cp system allowed selectivity and
mechanistic experiments to probe the 1,2-RH-addition event.
ꢁ
[2] Activation of HC CR: a) R. E. Blake, Jr., D. M. Antonelli,
L. M. Henling, W. P. Schaefer, K. I. Hardcastle, J. E. Bercaw,
Organometallics 1998, 17, 718; b) J. L. Polse, R. A. Andersen,
R. G. Bergman, J. Am. Chem. Soc. 1998, 120, 13405.
À
Hybridization of reacting C H bonds generally determined
the relative rate of RH activation, whereas electronic factors
and substrate size were responsible for more subtle differ-
ences. Substrates that formed the most thermodynamically
stable products generally reacted most rapidly. KIE values
indicated that alkyne substrates likely undergo rate-deter-
mining metallacycle formation followed by rearrangement,
whereas the RH bond was likely broken directly in the rate-
determining step for other hydrocarbons. Continuing work
focuses on designing complexes capable of diastereoselective
[3] a) H. van der Heijden, B. Hessen, J. Chem. Soc. Chem.
Commun. 1995, 145; b) M. P. Coles, V. C. Gibson, W. Clegg,
M. R. J. Elsegood, P. A. Porelli, Chem. Commun. 1996, 1963;
c) J. Cheon, D. M. Rogers, G. S. Girolami, J. Am. Chem. Soc.
1997, 119, 6804; d) C. B. Pamplin, P. Legzdins, Acc. Chem. Res.
2003, 36, 223, and references therein; e) K. Wada, C. B. Pamplin,
P. Legzdins, B. O. Patrick, I. Tsyba, R. Bau, J. Am. Chem. Soc.
2003, 125, 7035; f) I. J. Blackmore, P. Legzdins, Organometallics
2005, 24, 4088; g) J. Y. K. Tsang, M. S. A. Buschhaus, P. Legzdins,
B. O. Patrick, Organometallics 2006, 25, 4215.
À
C H bond activation as well as on determining the factors
responsible for reactivity differences promoted by various
ancillary Cp-based ligands.
[4] a) B. C. Bailey, H. Fan, E. W. Baum, J. C. Huffman, M. Baik,
D. J. Mindiola, J. Am. Chem. Soc. 2005, 127, 16016; b) B. C.
Bailey, J. C. Huffman, D. J. Mindiola, J. Am. Chem. Soc. 2007,
129, 5302.
Received: April 24, 2007
Published online: June 19, 2007
ꢁ
[5] Activation of HC CR: J. L. Polse, R. A. Andersen, R. G.
Bergman, J. Am. Chem. Soc. 1995, 117, 5393.
[6] a) R. L. Zuckerman, S. W. Krska, R. G. Bergman, J. Am. Chem.
Soc. 2000, 122, 751; b) Only one diastereomer of 3c was detected
in solution[8]; c) On a preparative scale, products 3-R were
obtained (83–99%) on thermolysis of 4 in hydrocarbon solvents
RH.[8]
[7] Reaction of 4 requires elevated temperatures (compared with 1)
to extrude CH4.
[8] See the Supporting Information for further details.
[9] a) Product 3j slowly extrudes n-pentane at 458C. b) The kinetic
selectivity for n-pentane remained constant up to 50% con-
version. c) KIE measured at 20% conversion.
À
Keywords: C H activation · hydrocarbons · isotope effects ·
reaction mechanisms · zirconium
.
[1] a) P. J Walsh, F. J. Hollander, R. G. Bergman, J. Am. Chem. Soc.
1988, 110, 8729; b) P. J. Walsh, F. J. Hollander, R. G. Bergman,
Organometallics 1993, 12, 3705; c) S. Y. Lee, R. G. Bergman, J.
Am. Chem. Soc. 1995, 117, 5877; d) A. P. Duncan, R. G. Berg-
man, Chem. Rec. 2002, 2, 431; e) H. M. Hoyt, F. E. Michael,
R. G. Bergman, J. Am. Chem. Soc. 2004, 126, 1018; f) C. C.
Cummins, S. M. Baxter, P. T. Wolczanski, J. Am. Chem. Soc.
1988, 110, 8731; g) C. C. Cummins, C. P. Schaller, G. D. Van
Duyne, P. T. Wolczanski, A. W. E. Chan, R. Hoffmann, J. Am.
Chem. Soc. 1991, 113, 2985; h) C. P. Schaller, P. T. Wolczanski,
Inorg. Chem. 1993, 32, 131; i) J. de With, A. D. Horton, Angew.
Chem. 1993, 105, 958; Angew. Chem. Int. Ed. Engl. 1993, 32, 903;
[10] a) T. R. Cundari, T. R. Klinckman, P. T. Wolczanski, J. Am.
Chem. Soc. 2002, 124, 1481; b) L. M. Slaughter, P. T. Wolczanski,
T. R. Klinckman, T. R. Cundari, J. Am. Chem. Soc. 2000, 122,
7953.
5582
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 5580 –5582