Journal of the American Chemical Society
Page 10 of 13
References
1
2
3
4
5
6
7
8
9
1 For representative reviews and several lead references, see: (a)
Berry, J. F. Terminal Imido and Nitrido Complexes of the Late
Transition Metals. Comm. Inorg. Chem. 2009, 30, 28-66. (b)
Saouma, C. A.; Peters, J. C. M≡E and M=E Complexes of Iron
and Cobalt that Emphasize Three-Fold Symmetry (E = O, N,
NR). Coord. Chem. Rev. 2011, 255, 920-937. (c) Mondal, B.;
Roy, L.; Neese, F.; Ye, S. F. High-Valent Iron-Oxo and -Nitrido
Complexes: Bonding and Reactivity. Isr. J. Chem. 2016, 56,
763-772. (d) Wagner, W. D.; Nakamoto, K. Formation of
Nitridoiron(V) Porphyrins Detected by Resonance Raman
Spectroscopy. J. Am. Chem. Soc. 1988, 110, 4044-4045; (e)
Meyer, K.; Bill, E.; Mienert, B.; Weyhermüller, T.; Wieghardt,
K. Photolysis of cis- and trans-[FeIII(cyclam)(N3)2]+ Complexes:ꢀ
Spectroscopic Characterization of a Nitridoiron(V) Species. J.
Am. Chem. Soc. 1999, 121, 4859-4876; (f) Berry, J. F.; Bill, E.;
Bothe, E.; George, S. D.; Mienert, B.; Neese, F.; Wieghardt, K.
An Octahedral Coordination Complex of Iron(VI). Science
2006, 312, 1937-1941; (g) Aldrich, K. E.; Billow, B. S.;
Holmes, D.; Bemowski, R. D.; Odom, A. L. Weakly
7 Kim, C.-H.; Newton, W. E.; Dean, D. R. Role of the MoFe Protein
.Alpha.-Subunit Histidine-195 Residue in FeMo-Cofactor
Binding and Nitrogenase Catalysis. Biochemistry 1995, 34, 2798–
2808.
8
Fischer, E. O.; Schneider, J.; Neugebauer, D.
[(CO)3PPh3FeCNiPr2]+, a Novel Stable Carbyneiron Complex
Cation. Angew. Chem. Int. Ed. Engl. 1984, 23, 820–821.
9 Lee, Y.; Peters, J. C. Silylation of Iron-Bound Carbon Monoxide
Affords a Terminal Fe Carbyne. J. Am. Chem. Soc. 2011, 133,
4438–4446.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
10 Suess, D. L. M.; Peters, J. C. A CO-Derived Iron Dicarbyne That
Releases Olefin upon Hydrogenation. J. Am. Chem. Soc. 2013,
135, 12580–12583.
11
Rittle, J.; Peters, J. C. Proton-Coupled Reduction of an Iron
Cyanide Complex to Methane and Ammonia. Angew. Chem. Int.
Ed. 2016, 55, 12262–12265.
12
Rittle, J.; Peters, J. C. N–H Bond Dissociation Enthalpies and
Facile H Atom Transfers for Early Intermediates of Fe–N2 and
Fe–CN Reductions. J. Am. Chem. Soc. 2017, 139, 3161–3170.
13
Benton, P. M. C.; Laryukhin, M.; Mayer, S. M.; Hoffman, B.
Coordinating yet Ion Paired: Anion Effects on an Internal
Rearrangement. Organometallics 2017, 36, 1227–1237; (h)
Martinez, J. L.; Lin, H.-J.; Lee, W.-T.; Pink, M.; Chen, C.-H.;
Gao, X.; Dickie, D. A.; Smith, J. M. Cyanide Ligand Assembly
by Carbon Atom Transfer to an Iron Nitride. J. Am. Chem. Soc.
2017, 139, 14037–14040; (i) Bucinsky, L.; Breza, M.; Lee, W.-
T.; Hickey, A. K.; Dickie, D. A.; Nieto, I.; DeGayner, J. A.;
Harris, T. D.; Meyer, K.; Krzystek, J.; Ozarowski, A.; Nehrkorn,
J.; Schnegg, A.; Holldack, K.; Herber, R. H.; Telser, J.; Smith, J.
M. Spectroscopic and Computational Studies of Spin States of
Iron(IV) Nitrido and Imido Complexes. Inorg. Chem. 2017, 56,
4751–4768.
M.; Dean, D. R.; Seefeldt, L. C. Localization of a Substrate
Binding Site on the FeMo-Cofactor in Nitrogenase:ꢀ Trapping
Propargyl Alcohol with an α-70-Substituted MoFe Protein.
Biochemistry 2003, 42, 9102–9109.
14
For structurally characterized examples of Fe-CCH complexes
see: (a) Le Narvor, N.; Toupet, L.; Lapinte, C. Elemental Carbon
Chain Bridging Two Iron Centers: Syntheses and Spectroscopic
Properties of [Cp*(dppe)Fe-C4-FeCp*(dppe)]n+•n[PF6]-. X-Ray
Crystal Structure of the Mixed Valence Complex (n = 1). J. Am.
Chem. Soc. 1995, 117, 7129–7138. (b) Dahlenburg, L.; Weiβ, A.;
Bock, M.; Zahl, A. Ethinyl- Und Butadiinylkomplexe Des Eisens
2
Und
Rutheniums
Mitterminalen
Hauptgruppenelement-
(a) Betley, T. A.; Peters, J. C. A Tetrahedrally Coordinated
Substituenten, Cp* Fe(Ph2PCH(X)CH2PPh2) C ≡ CY (X = H,
PPh2; Y = H, PPh2, P(+)Ph2Me) Und Ru(Ph2PCH2PPh2)2(X) C ≡
CC ≡ CSiMe3 (X = Cl, C ≡ CC ≡ CSiMe3). J. Organomet. Chem.
1997, 541, 465–471. (c) Akita, M.; Terada, M.; Oyama, S.;
Morooka, Y. Preparation, Structure, and Divergent Fluxional
L3Fe−Nx Platform that Accommodates Terminal Nitride
(FeIV≡N) and Dinitrogen (FeI−N2−FeI) Ligands. J. Am. Chem.
Soc. 2004, 126, 6252-6254. (b) Hendrich, M. P.; Gunderson, W.;
Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C.
C.; Peters, J. C. On the Feasibility of N2 Fixation via a Single-Site
FeI/FeIV Cycle: Spectroscopic Studies of FeI(N2)FeI, FeIVN, and
Related Species. PNAS 2006, 103, 17107–17112.
Thompson, N. B.; Green, M. T.; Peters, J. C. Nitrogen Fixation
via a Terminal Fe(IV) Nitride. J. Am. Chem. Soc. 2017, 139,
15312–15315.
Behavior of Cationic Dinuclear Iron Acetylides [Fp* (C≡CR)]BF4
2
(R = H, Ph). Organometallics 1990, 9, 816–825.
15
3
Lee, Y.; Mankad, N. P.; Peters, J. C. Triggering N2 Uptake via
Redox-Induced Expulsion of Coordinated NH3 and N2 Silylation
at Trigonal Bipyramidal Iron. Nat. Chem. 2010, 2, 558–565.
16
4 (a) Lee, C. C.; Hu, Y.; Ribbe, M. W. Catalytic Reduction of CN−,
CO, and CO2 by Nitrogenase Cofactors in Lanthanide-Driven
Reactions. Angew. Chem. Int. Ed. 2015, 54, 1219–1222. (b) Lee,
C. C.; Hu, Y.; Ribbe, M. W. Vanadium Nitrogenase Reduces CO.
Science 2010, 329, 642–642. (c) Hu, Y.; Lee, C. C.; Ribbe, M. W.
Extending the Carbon Chain: Hydrocarbon Formation Catalyzed
by Vanadium/Molybdenum Nitrogenases. Science 2011, 333,
753–755. (d) Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C.
Molybdenum Nitrogenase Catalyzes the Reduction and Coupling
of CO to Form Hydrocarbons. J. Biol. Chem. 2011, 286, 19417–
19421. (e) Spatzal, T.; Perez, K. A.; Einsle, O.; Howard, J. B.;
Rees, D. C. Ligand Binding to the FeMo-Cofactor: Structures of
CO-Bound and Reactivated Nitrogenase. Science 2014, 345,
1620-1623.
Burgess, B. K.; Lowe, D. J. Mechanism of Molybdenum
Nitrogenase. Chem. Rev. 1996, 96, 2983–3012.
Dilworth, M. J.; Fisher, K.; Kim, C.-H.; Newton, W. E. Effects
on Substrate Reduction of Substitution of Histidine-195 by
Glutamine in the α-Subunit of the MoFe Protein of Azotobacter
Vinelandii Nitrogenase. Biochemistry 1998, 37, 17495–17505.
Bennett, M. A. Olefin and Acetylene Complexes of Transition
Metals. Chem. Rev. 1962, 62, 611–652.
17
For structurally characterized examples of mononuclear C2H2
complexes of Cr, Ni, and Cu, see: (a) Alt, H. G.; Han, J. S.;
Rogers, R. D.; Thewalt, U. Acetylenkomplexe des Wolframs.
Moleküllstrukturen
C5H4CMe2C13H9)W(CO)(HC2Ph)Me,
C5H4CMe2C13H8)W(CO)(C2Ph2)
von
(η5-
η1-
(η5:
und
(η5-
C5H5)Cr(CO)(C2H2)NO; ein Vergleich von alkinischen Vier- und
Zweielektronenliganden. J. Organomet. Chem. 1993, 459, 209–
217. (b) Munakata, M.; Kitagawa, S.; Kawada, I.; Maekawa, M.;
Shimono, H. Synthesis, Formation Constants and Structures of
Ternary Copper(I) Complexes with 1,10-Phenanthroline and
Alkynes. J. Chem. Soc., Dalton Trans. 1992, 14, 2225–2230. (c)
5
Pörschke,
K.
R.;
Tsay,
Y.-H.;
Krüger,
C.
Ethynebis(Triphenylphosphane)Nickel(0). Angew. Chem. Int. Ed.
1985, 24, 323–324. (d) Thompson, J. S.; Whitney, J. F. Copper(I)
Complexes with Unsaturated Small Molecules. Preparation and
Structural Characterization of Copper(I)-Di-2-Pyridylamine
Complexes with Olefins, Acetylene, and Carbon Monoxide.
Inorg. Chem. 1984, 23, 2813–2819. (e) Thompson, J. S.; Whitney,
6
ACS Paragon Plus Environment