SCHEME 1. Structure of the Purine Ring
Selective Amidation of 2,6-Dihalogenopurines:
Application to the Synthesis of New
2,6,9-Trisubstituted Purines
Sandrine Piguel†,‡ and Michel Legraverend*,‡
UniV Paris-Sud, Orsay F-91405, France, and UMR 176, Institut
Curie, Baˆt. 110-112, Centre UniVersitaire, 91405 Orsay, France
6-amido-2-aminopurines have not yet been explored and,
therefore, could find new applications in biology.
ReceiVed June 6, 2007
Following our previous efforts to synthesize 2-amidopurines
from 6-amino-2-iodopurines,4 the goal of the present work was
to synthesize purine derivatives bearing the alternative combina-
tion of an amide at the 6-position and an amine at position 2
from a readily available 2,6-dihalogenopurine such as 11
(Schemes 1 and 2). However, according to the literature (Scheme
1), an initial amination step (SNAr) of 1 would occur at position
6.5-8 Thus, to prepare a 6-amidopurine from 1, the amidation
step must be carried out first. While 6-amidopurines can be
synthesized in two steps from 2,6-dihalogenopurine (amination
followed by acylation9-11), a more straightforward method
would be a direct amidation of 2,6-dihalogenopurine 1. Although
Pd(0)-catalyzed amidations of 6-bromo-12 and 6-chloropurine13
have been described during the progress of our work, the
regioselectivity in amidations of 2,6-dihalogenopurines has not
yet been studied. Therefore, this paper reports the first examples
of regioselective amidation of 2,6-dihalogenopurines via an
efficient Pd(0)-catalyzed reaction using Buchwald conditions.14
Palladium-catalyzed reactions on purines can be performed
by taking advantage of the well-known regioselectivity between
the 6 and 2 positions in Suzuki,15 Sonogashira,16,17 and Stille18
reactions. For example, Pd(0)-catalyzed alkyne cross-coupling
with 1, at room temperature, provides the 2-alkynyl derivative
We report herein the palladium(0)/Xantphos-catalyzed cross-
coupling of various amides with 2,6-dihalogenopurines, with
substituent-dependent regioselectivity. Furthermore, subject-
ing the same 2,6-dihalogenopurines to SNAr conditions with
amide/NaH in DMF leads to inverted regioselectivity albeit
in lower yield. These methodologies allow the two-step
synthesis of new 2,6,9-trisubstituted purines from readily
available 2,6-dihalogenopurines.
(4) Vandromme, L.; Legraverend, M.; Kreimerman, S.; Lozach, O.;
Meijer, L.; Grierson, D. S. Bioorg. Med. Chem. 2007, 15, 130.
(5) Chang, Y.-T.; Gray, N. S.; Rosania, G. R.; Sutherlin, D. P.; Kwon,
S.; Norman, T. C.; Sarohia, R.; Leost, M.; Meijer, L.; Schultz, P. G. Chem.
Biol. 1999, 6, 361.
(6) Legraverend, M.; Ludwig, O.; Bisagni, E.; Leclerc, S.; Meijer, L.;
Giocanti, N.; Sadri, R.; Favaudon, V. Bioorg. Med. Chem. 1999, 7, 1281.
(7) (a) Schow, S. R.; Mackman, R. L.; Blum, C. L.; Brooks, E.; Horsma,
A. G.; Joly, A.; Kerwar, S. S.; Lee, G.; Shiffman, D.; Nelson, M. G.; Wang,
X.; Wick, M. M.; Zhang, X.; Lum, R. T. Bioorg. Med. Chem. Lett. 1997,
7, 2697. (b) Fiorini, M. T.; Abell, C. Tetrahedron Lett. 1998, 39, 1827.
(8) Liu J.; Robins, M. J. J. Am. Chem. Soc. 2007, 129, 5962 and
references cited therein.
(9) Jagtap, P. G.; Chen, Z.; Szabo, C.; Klotz, K.-N. Bioorg. Med. Chem.
Lett. 2004, 14, 1495.
(10) Buck, I. M.; Eleuteri, A.; Reese, C. B. Tetrahedron 1994, 50, 9195.
(11) Aritomo, K.; Wada, T.; Sekine, M. J. Chem. Soc., Perkin Trans. 1
1995, 1837.
(12) Terrazas, M.; Ariza, X.; Farras, J.; Guisado-Yang, J. M.; Vilarrasa,
J. J. Org. Chem. 2004, 69, 5473.
A great variety of di-, tri-, or tetrasubstituted purines so far
described in the literature have been found to be potent inhibitors
of chaperone HSP90, protein kinases (MAP, Src, and Cdk),
sulfotransferases, phosphodiesterases, and microtubule assembly,
inducers of interferon and (de)differenciation, antagonists of
adenosine receptors, and corticotropin-releasing hormone recep-
tors.1 This wide range of biological activities displayed by
purines is confered by the diversity of the substituents that can
be combined on the C-2, C-6, C-8, and N-9 centers (Scheme
1). It is therefore of great interest to explore new types of
substituents on the purine ring of which introduction of an amide
function at positions 2 and/or 6 is particularly pertinent since
known inhibitors of various protein kinases have been improved
in this way.2,3 Whereas many 2,6-diaminopurine derivatives
(roscovitine, purvalanol)1 exhibit potent biological activities,
(13) Terrazas, M.; Ariza, X.; Vilarrasa, J. Org. Lett. 2005, 7, 2477.
(14) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043.
(15) Havelkova, M.; Dvorak, D.; Hocek, M. Synthesis 2001, 1704.
(16) Abiru, T.; Miyashita, T.; Watanabe, Y.; Yamaguchi, T.; Machida,
H.; Matsuda, A. J. Med. Chem. 1992, 35, 2253.
(17) Harada, H.; Asano, O.; Hoshino, Y.; Yoshikawa, S.; Matsukura,
M.; Kabasawa, Y.; Niijima, J.; Kotake, Y.; Watanabe, N.; Kawata, T.; Inoue,
T.; Horizoe, T.; Yasuda, N.; Minami, H.; Nagata, K.; Murakami, M.;
Nagaoka, J.; Kobayashi, S.; Tanaka, I.; Abe, S. J. Med. Chem. 2001, 44,
170.
* To whom correspondance should be addressed. Tel: +33(0)169863085.
Fax: +33(0)169075381.
† Univ Paris-Sud.
‡ Institut Curie.
(1) Legraverend, M.; Grierson, D. S. Bioorg. Med. Chem. 2006, 14, 3987.
(2) Furet, P.; Bold, G.; Hofmann, F.; Manley, P.; Meyer, T.; Altmann,
K.-H. Bioorg. Med. Chem. Lett. 2003, 13, 2967.
(3) Yue, E. W.; DiMeo, S. V.; Higley, C. A.; Markwalder, J. A.; Burton,
C. R.; Benfield, P. A.; Grafstrom, R. H.; Cox, S.; Muckelbauer, J. K.;
Smallwood, A. M. Bioorg. Med. Chem. Lett. 2004, 14, 343.
(18) Langli, G.; Gundersen, L.-L.; Rise, F. Tetrahedron 1996, 52, 5625.
10.1021/jo071196p CCC: $37.00 © 2007 American Chemical Society
Published on Web 08/08/2007
7026
J. Org. Chem. 2007, 72, 7026-7029