4994
J. Vercouillie et al. / Bioorg. Med. Chem. Lett. 17 (2007) 4991–4995
3. Brucke, T.; Kornhuber, J.; Angelberger, P.; Asenbaum, S.;
¨
Frassine, H.; Podreka, I. J. Neural Transm. Gen. 1993, 94,
137.
4. Bergstro¨m, K. A.; Halldin, C.; Hall, H.; Lundkvist, C.;
Ginovart, N.; Swahn, C. G.; Farde, L. Eur. J. Nucl. Med.
1997, 24, 596.
5. Hiltunen, J.; Akerman, K. K.; Kuikka, J. T.; Bergstrom,
K. A.; Halldin, C.; Nikula, T.; Rasanen, P.; Tiihonen, J.;
Vauhkonen, M.; Karhu, J.; Kupila, J.; Lansimies, E.;
Farde, L. Eur. J. Nucl. Med. 1998, 25, 19.
6. Szabo, Z.; Kao, P. F.; Scheffel, U.; Suehiro, M.; Mathews,
W. B.; Ravert, H. T.; Musachio, J. L.; Marenco, S.; Kim,
S. E.; Ricaurte, G. A.; Wong, D. F.; Wagner, H. N.;
Dannals, R. F. Synapse 1995, 20, 37.
7. Jilek, J.; Sindelar, K.; Pomykacek, J.; Kmonicek, V.;
Sedivy, Z.; Hrubantova, M.; Holubek, J.; Svatek, E.;
Ryska, M.; Dlohozkova, N.; Protiva, M. Collect. Czech.
Chem. Commun. 1989, 54, 3294.
8. Wellsow, J.; Kovar, K. A.; Machulla, H. J. J. Pharm.
Pharm. Sci. 2002, 5, 245.
9. Kung, M. P.; Hou, C.; Oya, S.; Mu, M.; Acton, P. D.;
Kung, H. F. Eur. J. Nucl. Med. 1999, 26, 844.
10. Acton, P. D.; Mu, M.; Plo¨ssl, K.; Hou, C.; Siciliano, M.;
Zhuang, Z. P.; Oya, S.; Choi, S. R.; Kung, H. F. Eur.
J. Nucl. Med. 1999, 26, 1359.
11. Acton, P. D.; Choi, S. R.; Hou, C.; Plo¨ssl, K.; Kung, H. F.
J. Nucl. Med. 2001, 42, 1556.
12. Oya, S.; Choi, S. R.; Hou, C.; Mu, M.; Kung, M. P.;
Acton, P. D.; Siciliano, M.; Kung, H. F. Nucl. Med. Biol.
2000, 27, 249.
13. Emond, P.; Vercouillie, J.; Innis, R.; Chalon, S.; Mavel, S.;
Frangin, Y.; Halldin, C.; Besnard, J. C.; Guilloteau, D.
J. Med. Chem. 2002, 45, 1253.
14. Vercouillie, J.; Tarkiainen, J.; Halldin, C.; Emond, P.;
Chalon, S.; Sandell, J.; Langer, O.; Guilloteau, D.
J. Labelled Compd. Radiopharm. 2001, 44, 113.
15. Tarkiainen, J.; Vercouillie, J.; Emond, P.; Sandell, J.;
Hiltunen, J.; Frangin, Y.; Guilloteau, D.; Halldin, C.
J. Labelled Compd. Radiopharm. 2001, 44, 1013.
16. Wilson, A. A.; Ginovart, N.; Hussey, D.; Meyer, J.;
Houle, S. Nucl. Med. Biol. 2002, 29, 509.
17. Zessin, J.; Deuther-Conrad, W.; Kretzschmar, M.; Wust,
¨
F.; Pawelke, B.; Brust, P.; Steinbach, J.; Bergmann, R.
Nucl. Med. Biol. 2006, 33, 53.
18. Jarkas, N.; McConathy, J.; Votaw, J. R.; Voll, R. J.;
Malveaux, E.; Camp, V. M.; Williams, L.; Goodman, R.
R.; Kilts, C. D.; Goodman, M. M. Nucl. Med. Biol. 2005,
32, 75.
derivatives 5c and 6c possess low affinities for the DAT
and NET compared to the other ligands (Table 1). For
compounds 5c and 6c, KiDAT values of 68.3 and
14.1 lM, and KiNET values of 5.55 and 17.9 lM, respec-
tively, were determined. For the other derivatives, Ki
values were in the range between 0.52 and 4.36 lM for
both DAT and NET. Therefore, although the nature
of the group in position 4 does not significantly affect
the SERT affinity it influences the selectivity of the li-
gand. In a series of ADAM analogs with different
groups in position 40 such as a cyano (DASB), a chlo-
rine, a methoxy (DAPP), and a trifluoro methyl group,
developed by Wilson et al.,33 the derivatives display sim-
ilar affinity for DAT and NET (between 1.4 and 2.7 lM
for the DAT and 1.2 and 2.0 lM for the NET), except
the chlorine derivative with higher and non-negligible
affinity for both transporters (KiDAT = 115 nM and
KiNET = 230 nM). Comprehensive SAR studies are
needed to draw a profound conclusion whether the cya-
no group in position 40 (Scheme 3) affects the SERT
selectivity of the compounds. Third, the introduction
of a halogen in position 5 (ring A, Scheme 3) does not
affect the SERT affinity of the ligands. Even if the elec-
tronic density has been modified, with the introduction
of a chlorine or fluorine atom, all the compounds 1c–
6c display high affinity for the SERT, which is compara-
ble to MADAM. Moreover, the introduction of an hal-
ogen at this position does not affect the SERT selectivity
as shown by Ki values for DAT and NET higher than
500 nM. It appears that the introduction of a halogen
at this position does not affect the SERT affinity and
selectivity, and therefore this part of the molecule pre-
sumably does not play a critical role in the SERT–ligand
interaction. It can be hypothesized, that at least small
groups can be introduced at position 5 without signifi-
cantly modifying SERT affinity and selectivity. This will
allow chemical modifications which might result in im-
proved SERT tracer properties.
In conclusion, we have synthesized a new series of fluo-
rinated diphenylchalcogen derivatives with sub- to low
nanomolar SERT affinity combined with low affinity to-
ward the DAT and NET.
19. Huang, Y.; Hwang, D. R.; Bae, S. A.; Sudo, Y.; Guo, N.;
Zhu, Z.; Narendran, R.; Laruelle, M. Nucl. Med. Biol.
2004, 31, 543.
Acknowledgment
20. Huang, Y.; Bae, S. A.; Zhu, Z.; Guo, N.; Roth, B. L.;
Laruelle, M. J. Med. Chem. 2005, 48, 2559.
21. Zhu, Z.; Guo, N.; Narendran, R.; Erritzoe, D.; Ekelund,
J.; Hwang, D. R.; Bae, S. A.; Laruelle, M.; Huang, Y.
Nucl. Med. Biol. 2004, 31, 983.
22. Ginovart, N.; Wilson, A. A.; Meyer, J. H.; Hussey,
D.; Houle, S. J. Cereb. Blood Flow Metab. 2001, 21,
1342.
23. Huang, Y.; Hwang, D. R.; Narendran, R.; Sudo, Y.;
Chatterjee, R.; Bae, S. A.; Mawlawi, O.; Kegeles, L. S.;
Wilson, A. A.; Kung, H. F.; Laruelle, M. J. Cereb. Blood
Flow Metab. 2002, 22, 1377.
This work has been supported in part by a grant of the
Sa¨chsisches Ministerium fur Wissenschaft und Kunst.
¨
Supplementary data
Supplementary data associated with this article can
References and notes
24. Houle, S.; Ginovart, N.; Hussey, D.; Meyer, J. H.; Wilson,
A. A. Eur. J. Nucl. Med. 2000, 27, 1719.
25. Zessin, J.; Eskola, O.; Brust, P.; Bergman, J.; Steinbach,
J.; Lehikoinen, P.; Solin, O.; Johannsen, B. Nucl. Med.
Biol. 2001, 28, 857.
1. Brust, P.; Hesse, S.; Muller, U.; Szabo, Z. Curr. Psychiatry
¨
Rev. 2006, 2, 111.
2. Brust, P.; Scheffel, U.; Szabo, Z. IDrugs 1999, 2, 129.