SCHEME 1
Highly Efficient Synthesis of Functionalized
Indolizines and Indolizinones by
Copper-Catalyzed Cycloisomerizations of
Propargylic Pyridines
Bin Yan, Yebing Zhou, Hao Zhang, Jingjin Chen, and
Yuanhong Liu*
their unique photophysical properties.3 Although a number of
methods are available for the synthesis of indolizines,4,5 the
development of general and efficient synthesis of functionalized
indolizines is still highly attractive.6,7 Recently, Gevorgyan et
al. reported an interesting Au-catalyzed cascade 1,2-migration/
cycloisomerization of propargylic substrates to indolizines with
various functionalities.8 The metal salts employed were sug-
gested to facilitate an alkyne-vinylidene isomerization with
concomitant 1,2-migration of H, silyl, stannyl, or germyl groups
by the formation of gold-vinylidene intermediates. We have
reported a Pd/Cu-catalyzed one-pot synthesis of 3-aminoin-
dolizines through the reactions of propargyl amines or amides
with heteroaryl bromides.9 It was found that this reaction was
strongly dependent on the presence of a base and on the solvent
employed. A suitable base may facilitate a propargyl-allenyl
isomerization to an allenic intermediate or serve as a good ligand
to stabilize the copper intermediates. On the basis of this work,
we envisioned that propargylic acetates bearing pyridine rings
may also undergo copper-catalyzed cyclization via allenic
intermediates to give indolizines (Scheme 1). In this paper, we
report the cyclization of 2-pyridyl-substituted propargylic
acetates 1 by a more convenient, economic, and efficient copper-
catalyzed approach for the synthesis of C-1 oxygenated indoliz-
ines at room temperature. The present method could be readily
State Key Laboratory of Organometallic Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences,
354 Fenglin Lu, Shanghai 200032, People’s Republic of China
ReceiVed May 9, 2007
The copper-catalyzed cycloisomerizations of 2-pyridyl-
substituted propargylic acetates and its derivatives are
described, which offer an efficient route to C-1 oxygenated
indolizines with a wide range of substituents under mild
reaction conditions. The presented method could be readily
applied to the synthesis of indolizinones through a cycliza-
tion/1,2-migration of tertiary propargylic alcohols.
(3) (a) Taguchi, T. U.S. Patent 0015614-A1, 2001. (b) Taguchi, T. U.S.
Patent 0050476-A1, 2003.
(4) For reviews, see: (a) Uchida, T.; Matsumoto, K. Synthesis 1976,
209. (b) Behnisch, A.; Behnisch, P.; Eggenweiler, M.; Wallenhorst, T.
Indolizine. In Houben-Weyl, 1994; Vol. E6b/1, 2a, pp 323-450.
(5) (a) Scholtz, M. Ber. Dtsch. Chem. Ges. 1912, 45, 734. (b) Boekel-
heide, V.; Windgassen, R. J., Jr. J. Am. Chem. Soc. 1959, 81, 1456. (c)
Tschitschibabin, A. E. Ber. Dtsch. Chem. Ges. 1927, 60, 1607. (d) Hurst,
J.; Melton, T.; Wibberley, D. G. J. Chem. Soc. 1965, 2948. (e) Bora, U.;
Saikia, A.; Boruah, R. C. Org. Lett. 2003, 5, 435. (f) Miki, Y.; Hachiken,
H.; Takemura, S.; Ikeda, M. Heterocycles 1994, 22, 701. (g) Poissonnet,
G.; Theret-Bettiol, M.-H.; Dodd, R. H. J. Org. Chem. 1996, 61, 2273. (h)
Katritzky, A. R.; Qiu, G.; Yang, B.; He, H.-Y. J. Org. Chem. 1999, 64,
7618. (i) Fang, X.; Wu, Y. M.; Deng, J.; Wang, S. W. Tetrahedron 2004,
60, 5487. (j) Sasaki, T.; Kanematsu, K.; Kakehi, A.; Ito, G.; Tetrahedron
1972, 28, 4947. (k) Pohjala, E. Tetrahedron Lett. 1972, 13, 2585. (l) Nugent,
R. A.; Murphy, M. J. Org. Chem. 1987, 52, 2206. (m) Takacs, J. M.;
Weidner, J. J.; Takacs, B. E. Tetrahedron Lett. 1993, 34, 6219. (n) Kaloko,
J., Jr.; Hayford, A. Org. Lett. 2005, 7, 4305. For copper-catalyzed indolizine
formation, see: (o) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am.
Chem. Soc. 2001, 123, 2074. (p) Kim, J. T.; Gevorgyan, V. Org. Lett. 2002,
4, 4697. (q) Kim, J. T.; Butt, J.; Gevorgyan, V. J. Org. Chem. 2004, 69,
5638. (r) Kim, J. T.; Gevorgyan, V. J. Org. Chem. 2005, 70, 2054.
(6) (a) Ohsawa, A.; Abe, Y.; Igeta, H. Bull. Chem. Soc. Jpn. 1980, 53,
3273. (b) Abe, Y.; Ohsawa, A.; Igeta, H. Chem. Pharm. Bull. 1982, 30,
881.
(7) During our manuscript preparation, a platinum or InCl3-catalyzed
cyclization of pyridine propargylic pivaloate and its derivatives to indolizines
and indolizinones was been reported by Sarpong et al. The reaction usually
requires higher temperature (40-70 °C for indolizines and 100 °C for
indolizinones) with benzene as the solvent and bulky electron-rich phosphine
ligands such as 2-(di-tert-butylphosphino)biphenyl or 2-(dicyclohexylphos-
phino)biphenyl as the ligands in the case of platinum catalysis. See: Smith,
C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169.
(8) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050.
(9) Liu, Y.; Song, Z.; Yan, B. Org. Lett. 2007, 9, 409.
Indolizines, which exhibit intriguing molecular structures
featured by an N-bridgehead bicyclic ring system, have received
much attention in recent years.1 Many of the synthetic and
natural indolizines have displayed important biological activities
which can find a variety of applications in pharmaceutical use.2
They are also useful in the field of material science owing to
(1) For reviews, see: (a) The Structure, Reactions, Synthesis, and Uses
of Heterocyclic Compounds. In ComprehensiVe Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vols.
1-8. (b) Flitsch, W. In ComprehensiVe Heterocyclic Chemistry II; Katritzky,
A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol.
8, p 237. (c) Swinborne, J. H.; Klinkert, G. AdV. Heterocycl. Chem. 1978,
23, 103.
(2) For recent reviews, see: (a) Micheal, J. P. Alkaloids 2001, 55, 91.
(b) Micheal, J. P. Nat. Prod. Rep. 2002, 19, 742. (c) Nash, R. J.; Fellows,
L. E.; Dring, J. V.; Striton, C. H.; Carter, D.; Hegarty, M. P.; Bell, E. A.
Phytochemistry 1988, 27, 1403. For selected papers, see: (d) Molyneux,
R. J.; James, L. F. Science 1982, 216, 190. (e) Gubin, J.; Descamps, M.;
Chatelain, P.; Nisato, D. Eur. Pat. Appl. EP 235111, 1987; Chem. Abstr.
1988, 109, 6405b. (f) Okada, S.; Sawada, K.; Kuroda, A.; Watanabe, S.;
Tanaka, H. Eur. Pat. Appl. EP 519353, 1992; Chem. Abstr. 1993, 118,
212886y. (g) King, F. D.; Gaster, L. M.; Joiner, G. F. PCT Int. Appl. WO
9308187 1993; Chem. Abstr. 1993, 119, 160281. (h) Harrell, W. B. J.
Pharm. Sci. 1970, 59, 275. (i) Koya, K.; Sun, L.; Ono, M.; Ying, W.; Li,
H. PCT Int. Appl. WO 03022846, 2003.
10.1021/jo070983j CCC: $37.00 © 2007 American Chemical Society
Published on Web 08/25/2007
J. Org. Chem. 2007, 72, 7783-7786
7783