7302 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 22
Brief Articles
development in mouse embryos lacking fibronectin. DeVelopment
1993119, 1079–1091.
(16) Yang, J. T.; Rayburn, H.; Hynes, R. O. Embryonic mesodermal defects
in alpha 5 integrin-deficient mice. DeVelopment 1993, 119, 1093–
1105.
(17) Heckmann, D.; Meyer, A.; Marinelli, L.; Zahn, G.; Stragies, R.;
Kessler, H. Probing integrin selectivity: rational design of highly active
and selective ligands for the a5ꢀ1 and avꢀ3 intrgrin receptor. Angew.
Chem., Int. Ed. 2007, 46, 3571–3574.
(18) Stragies, R.; Osterkamp, F.; Zischinsky, G.; Vossmeyer, D.; Kalkhof,
H.; Reimer, U.; Zahn, G. Design and synthesis of a new class of
selective integrin alpha5beta1 antagonists. J. Med. Chem. 2007, 50,
3786–3794.
(19) Meyer, A.; Auernheimer, J.; Modlinger, A.; Kessler, H. Targeting RGD
recognizing integrins: drug development, biomaterial research, tumor
imaging and targeting. Curr. Pharm. Des. 2006, 12, 2723–2747.
(20) Smallheer, J. M.; Weigelt, C. A.; Woerner, F. J.; Wells, J. S.; Daneker,
W. F.; Mousa, S. A.; Wexler, R. R.; Jadhav, P. K. Synthesis and
biological evaluation of nonpeptide integrin antagonists containing
spirocyclic scaffolds. Bioorg. Med. Chem. Lett. 2004, 14, 383–387.
(21) Zimmermann, D.; Gutho¨hrlein, E. W.; Malesevic´, M.; Sewald, K.;
Wobbe, L.; Heggemann, C.; Sewald, N. Integrin R5ꢀ1 ligands:
biological evaluation and conformational analysis. ChemBioChem.
2005, 6, 272–276.
(22) Ruoslahti, E. RGD and other recognition sequences for integrins. Annu.
ReV. Cell DeV. Biol. 1996, 12, 697–715.
(23) Triantafilou, K.; Takada, Y.; Triantafilou, M. Mechanisms of integrin-
mediated virus attachment and internalization process. Crit. ReV.
Immunol. 2001, 21, 311–322.
(24) Garrigues, H. J.; Rubinchikova, Y. E.; DiPersio, C. M.; Rose, T. M.
Integrin alphaVbeta3 Binds to the RGD motif of glycoprotein B of
Kaposi’s sarcoma-associated herpesvirus and functions as an RGD-
dependent entry receptor. J. Virol. 2008, 82, 1570–1580.
(25) Xiong, X.; Huang, Y.; Lu, W. L.; Zhang, X.; Zhang, H.; Nagai, T.;
Zhang, Q. Intracellular delivery of doxorubicin with RGD-modified
sterically stabilized liposomes for an improved antitumor efficacy: in
vitro and in vivo. J. Pharm. Sci. 2005, 94, 1782–1793, and the
references 16-20 cited therein.
(26) Koppitz, M.; Huenges, M.; Gratias, R.; Kessler, H. Synthesis of
Unnatural Lipohilic N-(9H-Fluoren-9-ylmethoxy)carbonyl-Substituted
Amino Acids and Their Incorporation into Cyclic RGD-Peptides: A
Structure-Activity Study. HelV. Chim. Acta 1997, 80, 1280–1300.
(27) Hu, B.; Finsinger, D.; Peter, K.; Guttenberg, Z.; Ba¨rmann, M.; Kessler,
H.; Escherich, A.; Moroder, L.; Bo¨hm, J.; Baumeister, W.; Sui, S. F.;
Sackmann, E. Intervesicle cross-linking with integrin alpha IIb beta 3
and cyclic-RGD-lipopeptide. A model of cell-adhesion processes.
Biochemistry 2000, 39, 12284–12294.
(28) Nasongkla, N.; Shuai, X.; Ai, H.; Weinberg, B. D.; Pink, J.; Boothman,
D. A.; Gao, J. cRGD-functionalized polymer micelles for targeted
doxorubicin delivery. Angew. Chem., Int. Ed. 2004, 43, 6323–6327.
(29) Hood, J. D.; Bednarski, M.; Frausto, R.; Guccione, S.; Reisfeld, R. A.;
Xiang, R.; Cheresh, D. A. Tumor regression by targeted gene delivery
to the neovasculature. Science 2002, 296, 2404–2407.
(30) Murphy, E. A.; Majeti, B. K.; Barnes, L. A.; Makale, M.; Weis, S. M.;
Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D. A. Nanoparticle-mediated
drug delivery to tumor vasculature suppresses metastasis. Proc. Natl.
Acad. Sci. U.S.A. 2008, 105, 9343–9348.
(31) Karmali, P. P.; Valluripalli, V. K.; Chaudhuri, A. Design, syntheses
and in vitro gene delivery efficacies of novel mono-, di-, and
trilysinated cationic lipids: a structure-activity investigation. J. Med.
Chem. 2004, 47, 2123–2132.
(32) Rajesh, M.; Sen, J.; Srujan, M.; Mukherjee, K.; Sreedhar, B.;
Chaudhuri, A. Dramatic influence of the orientation of linker between
hydrophilic and hydrophobic lipid moiety in liposomal gene delivery.
J. Am. Chem. Soc. 2007, 129, 11408–11420.
(33) Cherny, R. C.; Honan, M. A.; Thiagarajan, P. Site-directed mutagenesis
of the arginine-glycine-aspartic acid in vitronectin abolishes cell
adhesion. J. Biol. Chem. 1993, 268, 9725–9729.
(34) Beauvais, A.; Erickson, C. A.; Goins, T.; Craig, S. E.; Humphries,
M. J.; Thiery, J. P.; Dufour, S. Changes in the fibronectin-specific
integrin expression pattern modify the migratory behavior of sarcoma
S180 cells in vitro and in the embryonic environment. J. Cell. Biol.
1995, 128, 699–713.
Gal plasmids, respectively, and Dr. Rajkumar Banerjee for his
assistance in tumor growth inhibition experiments. D.P., B.K.M.,
and G.M. thank the Council of Scientific and Industrial
Research, Government of India, New Delhi, and P.P.K. thanks
the University Grant Commission, Government of India, New
Delhi, for providing doctoral research fellowships.
Supporting Information Available: Details of syntheses,
1
purifications, H NMR, and high-resolution mass spectral charac-
terizations for the RGDK-lipopeptide 1 and the control lipopeptides,
namely RGEK-lipopeptide 2 and RGDL-lipopeptide 3, reverse
phase HPLC chromatograms for RGDK-lipopeptide 1, RGEK-
lipopeptide 2, RGDK-lipopeptide 3 in two mobile phases, and the
1
details of the HPLC conditions; H NMR and mass spectral data
for RGE-lipopeptide 2 and RGDK-lipopeptide 3, methods for
preparation of liposomes, details of transfection and FACS protocol,
General methods and materials, results in the antibody saturation
experiments and in vivo tumor regression experiments with RGDL-
lipopeptide 3, and details for antibody saturation experiments. This
material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 2005,
438, 932–936.
(2) Hynes, R. O. Integrins: bidirectional, allosteric signaling machines.
Cell 2002, 110, 673–687.
(3) Giancotti, F. G.; Ruoslahti, E. Integrin Signaling. Science 1999, 285,
1028–1032.
(4) van der, F. A.; Sonnenberg, A. Function and interactions of integrins.
Cell. Tissue Res. 2001, 305, 285–298.
(5) Varner, J. A.; Emerson, D. A.; Juliano, R. L. Integrin alpha 5 beta 1
expression negatively regulates cell growth: reversal by attachment
to fibronectin. Mol. Biol. Cell 1995, 6, 725–740.
(6) Friedlander, M.; Brooks, P. C.; Shaffer, R. W.; Kincaid, C. M.; Varner,
J. A.; Cheresh, D. A. Definition of two angiogenic pathways by distinct
alpha v integrins. Science 1995, 270, 1500–1502.
(7) Stupack, D. J.; Cheresh, D. A. Integrins and angiogenesis. Curr. Top.
DeV. Biol. 2004, 64, 207–238.
(8) Brooks, P. C.; Montgomery, A. M.; Rosenfeld, M.; Reisfeld, R. A.;
Hu, T.; Klier, G.; Cheresh, D. A. Integrin alpha v beta 3 antagonists
promote tumor regression by inducing apoptosis of angiogenic blood
vessels. Cell 1994, 79, 1157–1164.
(9) Brooks, P. C.; Stro¨mblad, S.; Klemke, R.; Visscher, D.; Sarkar, F. H.;
Cheresh, D. A. Antiintegrin alpha v beta 3 blocks human breast cancer
growth and angiogenesis in human skin. J. Clin. InVest. 1995, 96,
1815–1822.
(10) Friedlander, M.; Theesfeld, C. L.; Sugita, M.; Fruttiger, M.; Thomas,
M. A.; Chang, S.; Cheresh, D. A. Involvement of integrins alpha v
beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 9764–9769.
(11) Bader, B. L.; Rayburn, H.; Crowley, D.; Hynes, R. O. Extensive
Vasculogenesis, Angiogenesis, and Organogenesis Precede Lethality
in Mice Lacking All Rv Integrins. Cell 1998, 95, 507–519.
(12) Hodivala-Dilke, K. M.; McHugh, K. P.; Tsakiris, D. A.; Rayburn,
H.; Crowley, D.; Ullman-Cullere´, M.; Ross, F. P.; Coller, B. S.;
Teitelbaum, S.; Hynes, R. O. Beta3-integrin-deficient mice are a model
for Glanzmann thrombasthenia showing placental defects and reduced
survival. J. Clin. InVest. 1999, 103, 229–238.
(13) Reynolds, L. E.; Wyder, L.; Lively, J. C.; Taverna, D.; Robinson,
S. D.; Huang, X.; Sheppard, D.; Hynes, R. O.; Hodivala-Dilke, K. M.
Enhanced pathological angiogenesis in mice lacking beta3 integrin or
beta3 and beta5 integrins. Nat. Med. 2002, 8, 27–34.
(14) Kim, S.; Bell, K.; Mousa, S. A.; Varner, J. A. Regulation of
angiogenesis in vivo by ligation of integrin alpha5beta1 with the central
cell-binding domain of fibronectin. Am. J. Pathol. 2000, 156, 1345–
1362.
(15) George, E. L.; Georges-Labouesse, E. N.; Patel-King, R. S.; Rayburn,
H.; Hynes, R. O. Defects in mesoderm, neural tube and vascular
JM800915Y