Journal of the American Chemical Society
Communication
Curr. Chem. 2014, 343, 191. (j) Huang, L.; Arndt, M.; Gooβen, K.;
Heydt, H.; Gooβen, L. J. Chem. Rev. 2015, 115, 2596.
either Rh or acid. However, the branched isomer 3aa underwent
isomerization to the linear product 4aa faster in the presence of a
more acidic additive (e.g., m-xylylic vs phthalic acid). Thus, the
branched isomer is the kinetic product, which can be generated in
high yield using m-xylylic acid. In contrast, our phthalic acid
protocol generates linear products by a thermodynamically
controlled isomerization. Indeed, when we monitored the
reaction profile for our linear-selective hydroamination, we
observed formation of the branched isomer at early time points
followed by its conversion to the linear. Yudin observed a related
isomerization of allylic amines under Pd-catalysis, whereby the
kinetic (branched) product was favored by addition of DBU.16
Our Rh-catalyzed hydroamination provides an atom econom-
ical synthesis of allylic amines that complements traditional
allylic aminations, which require the use of leaving groups.
Mechanistic studies support the in situ formation of an allene
which undergoes hydroamination to provide allylic amines,
rather than the typically observed products of alkyne hydro-
amination (e.g., imines and enamines). Phthalic acid promotes
isomerization of the kinetically favored isomers to yield the more
stable linear isomers. Future studies will focus on catalyst design
to extend substrate scope and develop other variants.
(3) (a) Kadota, I.; Shibuya, A.; Lutete, L. M.; Yamamoto, Y. J. Org.
Chem. 1999, 64, 4570. (b) Lutete, L. M.; Kadota, I.; Yamamoto, Y. J. Am.
Chem. Soc. 2004, 126, 1622. (c) Patil, N. T.; Lutete, L. M.; Wu, H.;
Pahadi, N. K.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2006, 71,
4270. (d) Patil, N. T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2007, 72,
6577. (e) Narsireddy, M.; Yamamoto, Y. J. Org. Chem. 2008, 73, 9698.
(4) For the synthesis of enamines or imines by Rh-catalyzed alkyne
hydroaminations, see: (a) Hartung, C. G.; Tillack, A.; Trauthwein, H.;
Beller, M. J. Org. Chem. 2001, 66, 6339. (b) Fukumoto, Y.; Asai, H.;
Shimizu, M.; Chatani, N. J. Am. Chem. Soc. 2007, 129, 13792.
(c) Alonso-Moreno, C.; Carrillo-Hermosilla, F.; Romero-Fernan
́
dez,
J.; Rodríguez, A. M.; Otero, A.; Antinolo, A. Adv. Synth. Catal. 2009, 351,
̃
881. (d) Sakai, K.; Kochi, T.; Kakiuchi, F. Org. Lett. 2011, 13, 3928.
(e) Kumaran, E.; Leong, W. K. Organometallics 2012, 31, 1068.
(5) (a) Obora, Y.; Hatanaka, S.; Ishii, Y. Org. Lett. 2009, 11, 3510.
(b) Hatanaka, S.; Obora, Y.; Ishii, Y. Chem.Eur. J. 2010, 16, 1883.
(6) (a) Park, B. Y.; Nguyen, K. D.; Chaulagain, M. R.; Komanduri, V.;
Krische, M. J. J. Am. Chem. Soc. 2014, 136, 11902. (b) Liang, T.; Nguyen,
K. D.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 3161.
(7) Chen, Q.-A.; Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc. 2015, 137,
3157.
(8) (a) Lumbroso, A.; Koschker, P.; Vautravers, N. R.; Breit, B. J. Am.
Chem. Soc. 2011, 133, 2386. (b) Lumbroso, A.; Abermil, N.; Breit, B.
Chem. Sci. 2012, 3, 789. (c) Gellrich, U.; Meiβner, A.; Steffani, A.;
ASSOCIATED CONTENT
* Supporting Information
■
Kahny, M.; Drexler, H.-J.; Heller, D.; Plattner, D. A.; Breit, B. J. Am.
̈
S
Chem. Soc. 2014, 136, 1097. (d) Xu, K.; Khakyzadeh, V.; Bury, T.; Breit,
Experimental procedures and spectral data for all new
compounds. The Supporting Information is available free of
B. J. Am. Chem. Soc. 2014, 136, 16124. (e) Koschker, P.; Kahny, M.;
̈
Breit, B. J. Am. Chem. Soc. 2015, 137, 3131.
(9) For the synthesis of 3aa by Ir-catalyzed allylic amination, see: Shu,
C. T.; Leitner, A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4797.
(10) For alkyne 2l, no decomposition of starting materials was
observed after 18 h. For alkyne 2m, competitive alkyne decomposition
(dimerization and trimerization) was observed by GC/MS. The use of
other internal alkynes (e.g., 1-phenyl-1-butyne) gave trace amounts of
product.
AUTHOR INFORMATION
Corresponding Author
■
(11) For the asymmetric synthesis of N-allylic indoles, see: (a) Stanley,
L. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2009, 48, 7841. (b) Cui, H.-
L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem., Int. Ed.
2009, 48, 5737. (c) Liu, W.-B.; Zhang, X.; Dai, L.-X.; You, S.-L. Angew.
Chem., Int. Ed. 2012, 51, 5183. (d) Ye, K.-Y.; Dai, L.-X.; You, S.-L.
Chem.Eur. J. 2014, 20, 3040. (e) Chen, L.-Y.; Yu, X.-Y.; Chen, J.-R.;
Feng, B.; Zhang, H.; Qi, Y.-H.; Xiao, W.-J. Org. Lett. 2015, 17, 1381.
(12) The absolute configurations of all other amines 3 were assigned by
analogy.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Funding provided by UC Irvine and the National Institutes of
Health (GM105938).
■
REFERENCES
■
(13) Other acids (TFA, tartaric acid, malonic acid) which have pKa’s
from −0.3 to 3 promote the linear selective hydroamination. Phthalic is
the optimal acid with respect to substrate generality.
(1) For selected reviews on allylic substitutions, see: (a) Tsuji, J.;
Minami, I. Acc. Chem. Res. 1987, 20, 140. (b) Trost, B. M.; Van Vranken,
D. L. Chem. Rev. 1996, 96, 395. (c) Johannsen, M.; Jørgensen, K. A.
Chem. Rev. 1998, 98, 1689. (d) Trost, B. M.; Crawley, M. L. Chem. Rev.
(14) For Rh-catalyzed enantiospecific or enantioselective allylic
aminations, see: (a) Evans, P. A.; Robinson, J. E.; Nelson, J. D. J. Am.
Chem. Soc. 1999, 121, 6761. (b) Evans, P. A.; Clizbe, E. A. J. Am. Chem.
Soc. 2009, 131, 8722. (c) Vrieze, D. C.; Hoge, G. S.; Hoerter, P. Z.; Van
Haitsma, J. T.; Samas, B. M. Org. Lett. 2009, 11, 3140. (d) Arnold, J. S.;
Nguyen, H. M. J. Am. Chem. Soc. 2012, 134, 8380. (e) Arnold, J. S.;
Mwenda, E. T.; Nguyen, H. M. Angew. Chem., Int. Ed. 2014, 53, 3688.
(15) For Rh-catalyzed hydroamination of allenes, see: (a) Cooke, M.
L.; Xu, K.; Breit, B. Angew. Chem., Int. Ed. 2012, 51, 10876. (b) Li, C.;
2003, 103, 2921. (e) Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies,
̈
M.; Weihofen, R. Chem. Commun. 2007, 675. (f) Falciola, C. A.;
Alexakis, A. Eur. J. Org. Chem. 2008, 3765. (g) Lu, Z.; Ma, S. Angew.
Chem., Int. Ed. 2008, 47, 258. (h) Trost, B. M.; Zhang, T.; Sieber, J. D.
Chem. Sci. 2010, 1, 427. (i) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res.
2010, 43, 1461. (j) Poli, G.; Prestat, G.; Liron, F.; Kammerer-Pentier, C.
Top. Organomet. Chem. 2012, 38, 1. (k) Milhau, L.; Guiry, P. J. Top.
Organomet. Chem. 2012, 38, 95. (l) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top.
Organomet. Chem. 2012, 38, 155. (m) Begouin, J.-M.; Klein, J. E. M. N.;
Weickmann, D.; Plietker, B. Top. Organomet. Chem. 2012, 38, 269.
(2) For selected reviews on hydroaminations, see: (a) Muller, T. E.;
Beller, M. Chem. Rev. 1998, 98, 675. (b) Nobis, M.; Drießen-Holscher,
B. Angew. Chem., Int. Ed. 2001, 40, 3983. (c) Pohlki, F.; Doye, S. Chem.
Soc. Rev. 2003, 32, 104. (d) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem.
Rev. 2004, 104, 3079. (e) Odom, A. L. Dalton Trans. 2005, 225.
Kahny, M.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 13780. (c) Xu, K.;
̈
Thieme, N.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 2162. (d) Xu, K.;
Thieme, N.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 7268.
(16) (a) Watson, I. D. G.; Yudin, A. K. J. Am. Chem. Soc. 2005, 127,
17516. (b) Dubovyk, I.; Watson, I. D. G.; Yudin, A. K. J. Org. Chem.
2013, 78, 1559.
̈
̈
(f) Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407. (g) Muller, T. E.;
̈
Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108,
3795. (h) Hannedouche, J.; Schulz, E. Chem.Eur. J. 2013, 19, 4972.
(i) Reznichenko, A. L.; Nawara-Hultzsch, A. J.; Hultzsch, K. C. Top.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX