Inorg. Chem. 2007, 46, 8117−8119
Tripodal Phenylamine-Based Ligands and Their CoII Complexes
Matthew B. Jones and Cora E. MacBeth*
Department of Chemistry, 1515 Dickey DriVe, Emory UniVersity, Atlanta, Georgia 30322
Received June 29, 2007
The syntheses of two phenylamine-based ligand systems, N(o-
PhNH2)3 and N(o-PhNHC(O)iPr)3, are reported. These ligands
readily coordinate to CoII to form monomeric complexes. X-ray
In this context, we were particularly interested in inves-
tigating a tripodal tetraamine ligand in which the three ligand
arms are comprised of o-phenylamine moieties. The incor-
poration of o-phenylamine groups into this ligand backbone
is intriguing for several reasons: (1) The o-phenylamine
ligand backbone should be less flexible upon metal ion
chelation than its alkylamine counterparts.6 (2) Chelating
o-phenylenediamine units7 and o-phenylenediamine deriva-
tives8 have the potential to act as noninnocent or redox-active
ligands. (3) The tetradentate tripodal ligands of the general
form [N(o-PhL)3], where L ) OH9 or PR2,10 have been
known for some time, but the coordination chemistry of [N(o-
PhNH2)3] and its derivatives has, to the best of our
knowledge, yet to be investigated with first-row late-
transition-metal ions.11
In this work, we present the syntheses of the tetraamine
ligand tris(2-aminophenyl)amine, N(o-PhNH2)3, and its tria-
midoamine derivative, 2,2′,2′′-tris(isobutylamido)tripheny-
lamine [N(o-PhNHC(O)iPr)3]. The CoII complexes of both
of these ligands have been prepared and characterized.
The tetraamine ligand N(o-PhNH2)3 was synthesized in
multigram quantities by first preparing tris(2-nitrophenyl)-
amine via an SNAr reaction.12 The Pd-catalyzed reduction
of this species afforded N(o-PhNH2)3 in high yield (Scheme
1). The triamidoamine analogue was readily prepared by
acylation of a N(o-PhNH2)3 unit with isobutyryl chloride
-
diffraction studies establish that the [N(o-PhNC(O)iPr)3]3 ligand
stabilizes the CoII ion in a trigonal-monopyramidal coordination
environment. The axial coordination site in this complex is
accessible and, upon cyanide coordination, generates an electro-
chemically active species.
Tetraamine, tripodal ligand systems have been widely
employed in many areas of inorganic chemistry.1 Tripodal,
trianionic triamidoamines2 derived from tetraamine precur-
sors have received particular attention because of the ability
of this ligand type to support metal complexes with uncom-
mon coordination geometries,3 unique inorganic functional-
ities,4 and diverse catalytic capabilities.5 The most common
building block for these types of triamidoamine systems are
tripodal tetraamine fragments that contain a tertiary amine
substituted by three alkylamine moieties, such as tris(2-
aminoethyl)amine (tren).1 We have been interested in explor-
ing alternative building blocks for this type of ligand as a
means of varying the electronic features of the resulting
transition-metal centers.
* To whom correspondence should be addressed. E-mail: cora.macbeth@
emory.edu.
(1) Blackman, A. G. Polyhedron 2005, 24, 1-39.
(2) Schrock, R. R. Acc. Chem. Res. 1997, 30, 9-16.
(6) Mederos, A.; Dominguez, S.; Hernandez-Molina, R.; Sanchiz, J.; Brito,
F. Coord. Chem. ReV. 1999, 193, 913-939.
(3) (a) Cummins, C. C.; Lee, J.; Schrock, R. R.; Davis, W. M. Angew.
Chem., Int. Ed. Engl. 1992, 104, 1510-1512. (b) Pinkas, J.; Wang,
T.; Jacobson, R. A.; Verkade, J. G. Inorg. Chem. 1994, 33, 4202-
4210. (c) Verkade, J. G. Acc. Chem. Res. 1993, 26, 483-489. (d)
Roussel, P.; Alcock, N. W.; Scott, P. Chem. Commun. 1998, 7, 801-
802. (e) Filippou, A. C.; Schneider, S.; Schnakenburg, G. Inorg. Chem.
2003, 42, 6974-6976.
(4) (a) Christou, V.; Arnold, J. Angew. Chem., Int. Ed. Engl. 1993, 32,
1450-1452. (b) Cummins, C. C.; Schrock, R. R. Inorg. Chem. 1994,
33, 395-396. (c) Freundlich, J. S.; Schrock, R. R.; Cummins, C. C.;
Davis, W. M. J. Am. Chem. Soc. 1994, 116, 6476-6477. (d) Cummins,
C. C.; Schrock, R. R.; Davis, W. M. Angew. Chem., Int. Ed. Engl.
1993, 105, 758-761. (e) MacBeth, C. E.; Gupta, R.; Mitchell-Koch,
K. R.; Young, V. G., Jr.; Lushington, G. H.; Thompson, W. H.;
Hendrich, M. P.; Borovik, A. S. J. Am. Chem. Soc. 2004, 126, 2556-
2557. (f) Roussel, P.; Errington, W.; Kaltsoyannis, N.; Scott, P. J.
Organomet. Chem. 2001, 635, 69-74.
(7) (a) Mederos, A.; Dominguez, S.; Hernandez-Molina, R.; Sanchiz, J.;
Brito, F. Coord. Chem. ReV. 1999, 193-195, 857-911. (b) Zanello,
P. Metal Complexes Containing Redox-active Ligands. Inorganic
Electrochemistry: Theory, Practice, and Application; Royal Society
of Chemistry: Cambridge, U.K., 2003; pp 325-374.
(8) Fleischer, E. B.; Gebala, A. E.; Tasker, P. A. Inorg. Chim. Acta 1972,
6, 72-76.
(9) (a) Frye, C. L.; Vincent, G. A.; Hauschildt, G. L. J. Am. Chem. Soc.
1966, 88, 2727-2730. (b) Redshaw, C.; Rowan, M. A.; Homden, D.
M.; Dale, S. H.; Elsegood, M. R. J.; Matsui, S.; Matsuura, S. Chem.
Commun. 2006, 3329-3331. (c) Michalczyk, L.; de Gala, S.; Bruno,
J. W. Organometallics 2001, 20, 5547-5556.
(10) MacBeth, C. E.; Harkins, S. B.; Peters, J. C. Can. J. Chem. 2005, 83,
332-340.
(11) Silylated derivatives of the N(o-PhNH2)3 ligand, [N(o-PhNHSiEt3)3]
and [N(o-PhNHSiMe3)3], have been investigated with early transition
metals. See: Baumann, R. Group 4 Complexes Containing Tridentate
Diamido Donor Ligands. Organometallic Chemstry and Catalysis.
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA,
Feb 1999.
(5) (a) Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76-78. (b)
Ritleng, V.; Yandulov, D. V.; Weare, W. W.; Schrock, R. R.; Hock,
A. S.; Davis, W. M. J. Am. Chem. Soc. 2004, 126, 6150-6163. (c)
Chen, J.; Woo, L. K. J. Organomet. Chem. 2000, 601, 57-68.
(12) Gorvin, J. H. J. Chem. Soc., Perkin Trans. 1 1988, 6, 1331-1335.
10.1021/ic701289y CCC: $37.00
Published on Web 09/01/2007
© 2007 American Chemical Society
Inorganic Chemistry, Vol. 46, No. 20, 2007 8117