Angewandte
Chemie
Table 1: Epoxidation of 19.
nation. This product corresponded in all spectroscopic data
with an authentic sample.[20]
In conclusion, we have developed the first enantioselec-
tive synthesis of the guaianolide arglabin and its dimethyl-
amino adduct 1. The latter, as its hydrochloride salt, is
currently under clinical evaluation for the treatment of
various cancers. Key steps to build up the guaianolide
framework include a copper(I)-catalyzed asymmetric cyclo-
propanation, a stereoselective Sakurai allylation followed by
a retroaldol/lactonization cascade, a second Sakurai allyla-
tion, and ring-closing metathesis. This strategy should also
open access to related tricyclic 5,7,5-guaianolide natural
products, which we are currently investigating.
Entry Method
Conditions[a]
20/
Yield [%][c]
65
21[b]
1
2
dimethyl-
dioxirane
KHSO5, acetone, CH2Cl2/H2O, 88:12
pH 7.2 buffer, [18]crown-6,
08C, 6 h
halohydrine NaBrO3/NaHSO3 (1:2),
CH3CN/H2O (1:2), 48 h, RT
>99:1
80
Received: April 11, 2007
Published online: July 16, 2007
3
4
halohydrine NBS, THF/H2O (2:1), 15 h, RT >99:1
peracid
72
85
m-CPBA, CH2Cl2, À108C to
75:25
RT, 6 h
Keywords: arglabin ·asymmetricsynthesis ·farnesyl transferase·
5
vanadium
[V(O)(acac)2] (2 mol%),
TBHP, CH2Cl2, 08C to RT, 16 h
10:90
78[d]
.
natural products · total synthesis
[a] NBS=N-bromosuccinimide, m-CPBA=meta-chloroperoxybenzoic
acid. [b] Determined by 1H NMR and GC. [c] Yields of isolated products.
[d] Yield of isolated purified 21.
[1] S. M. Adekenov, M. N. Mukhametshanov, A. N. Kupriyanov,
Khim. Prir. Soedin. 1982, 565.
[2] T. E. Shaikenov, S. Adekenov, R. M. Williams, N. Prashad, F.
Baker, T. L. Madden, R. Newman, Oncol. Rep. 2001, 8, 173.
[3] T. E. Shaikenov, S. Adekenov, Arglabin. Its structure, properties
and usage, Pourtmouth, Virginia, 1997.
[4] N. S. Zhangabylov, L. Y. Dederer, L. B. Gorbacheva, S. V.
Vasilꢀeva, A. S. Terekhov, S. M. Adekenov, Pharm. Chem. J.
2004, 38, 651.
[5] A. Z. Abilꢀdaeva, R. N. Pak, A. T. Kulyyasov, S. M. Adekenov,
Eksp. Klin. Farmakol. 2004, 67, 37.
[6] R. B. Chhor, B. Nosse, S. Soergel, C. Böhm, M. Seitz, O. Reiser,
Chem. Eur. J. 2003, 9, 260.
entry 5), which demonstrates the extraordinary affinity for
precoordination of the vanadium reagent to hydroxy groups
before the epoxidation occurs. Epoxide 21 was isolated in
78% yield after chromatographic separation from the minor
b-epoxide product.
Treatment of 21 with trifluorosulfonic acid anhydride and
pyridine afforded a clean elimination product 22 as a single
regioisomer, which was confirmed by X-ray analysis
(Scheme 5).[14] Deoxygenation at C-4 was achieved by acetate
deprotection followed by the Barton–McCombie protocol[18]
to give rise to 23. Alkylation with the Eschenmoser salt,[19]
yielded 1, which could then be transformed to arglabin itself
by quaternization with methyliodide/trimethylamine elimi-
[7] B. Nosse, R. B. Chhor, W. B. Jeong, C. Boehm, O. Reiser, Org.
Lett. 2003, 5, 941.
[8] (+)-(R,R)-Bis(4-isopropyloxazoline)[4R,4R’)-2,2’-(2,2’-pro-
panediyl)bis(4-isopropyl-4,5-dihydrooxazole)]: D. A. Evans,
K. A. Woerpel, B. Nosse, A. Schall, Y. Shinde, E. Jezek, M. M.
Haque, R. B. Chhor, O. Reiser, P. Wipf, N. Jayasuriya, Org.
Synth. 2006, 83, 97.
[9] E. Jezek, A. Schall, P. Kreitmeier, O. Reiser, Synlett 2005, 915.
[10] Prepared in analogy to the reported O-benzyl derivative: T. T.
Curran, D. A. Hay, C. P. Koegel, J. C. Evans, Tetrahedron 1997,
53, 1983.
[11] T. Hayashi, T. Fujiwa, Y. Okamoto, Y. Katsuro, M. Kumada,
Synthesis 1981, 1001.
[12] A. Mengel, O. Reiser, Chem. Rev. 1999, 99, 1191.
[13] H. U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151.
[14] CCDC-648651 (for 19) and CCDC-648653 (for 22) contain the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
see also the Supporting Information.
[15] A. Hoveyda, D. A. Evans, G. C. Fu, Chem. Rev. 1993, 93, 1307.
[16] For a similar result, see: M. Ando, A. Akahane, K. Takase,
Chem. Lett. 1978, 727.
[17] K. B. Sharpless, T. R. Verhoeven, Aldrichimica Acta 1979, 12, 63.
[18] S. W. McCombie in Comprehensive Organic Synthesis, Vol. 8
(Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, 1991, p. 811.
[19] E. F. Kleinman in Encyclopedia of Organic Reagents (Ed.: L.
Paquette), Wiley, New York, 2004.
Scheme 5. a) Tf2O, pyridine, CH2Cl2, À108C to RT, 18 h, 62%.
b) 1. K2CO3, MeOH, 08C to RT, 4 h, 70%; 2. 1,1’-thiocarbonyldiimada-
zole, DMAP, CH2Cl2, RT, 4 h, 80%; 3. Bu3SnH, AIBN, toluene, 908C,
5 h, 77%. c) 1. LiHMDS, THF, À788C; 2. Eschenmoser salt, THF,
À788C to RT, 4 h, 75%; d) MeI, MeOH, NaHCO3, CH2Cl2, 80%.
AIBN=azobisisobutyronitrile, LiHMDS=lithium hexamethyldisilaza-
nide.
[20] We thank Dr. K-D. Göhler, CAC Chemnitz GmbH, for a sample
of natural arglabin.
Angew. Chem. Int. Ed. 2007, 46, 6361 –6363
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6363