R. Berger et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4833–4837
4837
Table 5
Effect of 40 on 18- and 48-h ONFIa in wild-type and CCK1Rꢀ/ꢀmice
References and notes
1. (a) Department of Health and Human Services, Center for Disease Control
P.; Bassand, J.-P.; Fox, K. A. A.; Smith, S. C.; Barter, P.; Tan, C.-E.; Van
Gaal, L.; Wittchen, H.-U.; Massien, C.; Haffner, S. M. Circulation 2007, 116,
1942.
Mouse
Suppression of food intake @ 3 mpka
48 h
18 h
Wild-type
CCK1Rꢀ/ꢀ
89%
nsb
85%
nsb
2. (a) Adams, K. F.; Schatzkin, A.; Harris, T. B.; Kipnis, V.; Mouw, T.; Ballard-
Barbash, R.; Hollenbeck, A.; Leitzmann, M. F. N. Engl. J. Med. 2006, 335, 763; (b)
McTigue, K.; Larson, J. C.; Valoski, A.; Burke, G.; Kotchen, J.; Lewis, C. E.;
Stefanick, M. L.; Van Horn, L.; Kuller, L. JAMA 2006, 296, 79; (c) Katzmarzyk, P.
T.; Janssen, I.; Ardern, C. I. Obes. Rev. 2003, 4, 257.
a
Compared with vehicle (10% Tw80 in water).
ns, not significant.
b
Table 6
3. Venkat Narayan, K. M.; Boyle, J. P.; Thompson, T. J.; Sorensen, S. W.;
Williamson, D. F. JAMA 2003, 290.
Active in vivo CCK1R agonists mouse pharmacokinetic profilea
4. (a) Lieverse, R. J.; Jansen, J. B. M. L.; Masclee, A. A. M.; Lamers, C. B. H. W. Ann. NY
Acad. Sci. 1994, 713, 268; (b) Liddle, R. A.; Goldfine, I. D.; Rosen, M. S.; Taplitz, R.
A.; Williams, J. A. J. Clin. Invest. 1985, 75, 1144; (c) Kissileff, H. R.; Pi-Sunyer, F.
X.; Thornton, J.; Smith, G. P. Am. J. Clin. Nutr. 1981, 34, 154.
5. (a) Chandra, R.; Little, T. J. Curr. Opin. Endocrinol. Diabetes Obes. 2007, 14, 63; (b)
Dufresne, M.; Seva, C.; Fourmy, D. Physiol. Rev. 2006, 86, 805; (c) Moran, T. H.;
Kinzig, K. P. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G183.
6. (a) Little, T. J.; Horowitz, M.; Feinle-Bisset, C. Obes. Rev. 2005, 6, 297; (b) Cox, J.
E.; Randich, A. Brain Res. 1997, 776, 189; (c) Moran, T. H.; Norgren, R.; Crosby, R.
J.; McHugh, P. R. Brain Res. 1990, 526, 95.
Compound Clp
(ml/min/kg)
Vd
(L/kg)
PO AUC
M-h)
t1/2
(h)
F
(%)
Cmax
M)
Tmax
(h)
(
l
(
l
4
5
35
40
5.3
10.4
20.4
9.7
0.47
0.59
3.7
0.39
0.61
0.15
0.1
3.5
1.7
2.5
2.3
7
0.28
6.7
0.6
5.5
8.0
22 0.82
11 0.18
0.42
4
0.18
a
IV administration dosed at 1.0 mpk, PO administration dosed at 10 mpk.
7. Gibbs, J.; Young, R. C.; Smith, G. P. J. Comp. Physiol. Psychol. 1973, 84, 488.
8. Gibbs, J.; Falasco, J. D.; McHugh, P. R. . Am. J. Physiol. 1976, 230, 12.
9. (a) Noble, F.; Wank, S. A.; Crawley, J. N.; Bradwejn, J.; Serogy, K. B.; Hamon, M.;
Roques, B. P. Pharmacol. Rev. 1999, 51, 745; (b) de Weerth, A.; Pisegna, J. R.;
Huppi, K.; Wank, S. A. Biochem. Biophys. Res. Commun. 1993, 194, 811.
10. (a) Chen, D.; Zhao, C. M.; Hakanson, R.; Samuelson, L. C.; Rehfeld, J. F.; Friis-
Hansen, L. Gastroenterology 2004, 126, 476; (b) Wank, S. A.; Pisegna, J. R.; de
Weerth, A. Ann. NY Acad. Sci. 1994, 713, 49.
ited any in vivo activity. On the other hand, compounds 4, 5, 35, 37,
and 40 containing the 3-(1-naphthoic acid) all displayed a statisti-
cally significant decrease in food intake relative to vehicle. Based
on these results, it seems that both incorporation and positioning
of the carboxylic acid moiety are critical factors that determine
the magnitude of in vivo potency in this structure class. The isopro-
pyl carboxamide 40 had the most significant effect on the reduc-
tion of overnight food intake in mice at both doses. Additionally,
at an oral dose of 3.0 mg/kg, 40 had no effect on food intake in
CCK1Rꢀ/ꢀ mice21 while inducing a significant reduction in food in-
take in wild-type mice (Table 5). Although these results indicate
that food intake reduction observed in wild-type mice dosed with
40 is CCK1R-mediated, it should be noted that the anorectic effects
may not be solely attributed to an increased satiety effect due to
CCK1R activation.22 Nevertheless, the ONFI reduction provides a
quantifiable method to evaluate the in vivo effects of CCK1R
agonists.
Table 6 presents the mouse pharmacokinetic profile of com-
pounds active in the ONFI assay. The most potent compound (40)
had the lowest oral exposure, oral bioavailability, and Cmax, sug-
gesting that systemic exposure may not be necessary for efficacy.23
In conclusion, a series of 2-substituted piperazine derived 1,2-
diarylimidazole carboxamides were found to be highly potent
and selective CCK1R agonists. Although several compounds pos-
sessed comparable sub-nanomolar in vitro activities, these activi-
ties did not always translate into in vivo efficacy. The
isopropylcarboxamide 40 exhibited one of the most potent in vitro
and in vivo profiles observed in this structure class to date.
11. Wank, S. A. Am. J. Physiol. 1998, 274, G607.
12. (a) García-López, M. T.; González-Muñiz, R.; Martín-Martínez, M.; Herranz, R.
Curr. Top. Med. Chem. 2007, 7, 1180; (b) Szewczyk, J. R.; Laudeman, C. Curr. Top.
Med. Chem. 2003, 3, 837.
13. Bignon, E.; Bachy, A.; Boigegrain, R.; Brodin, R.; Cottineau, M.; Gully, D.;
Herbert, J.-M.; Keane, P.; Labie, C.; Molimard, J.-C.; Olliero, D.; Oury-Donat, F.;
Petereau, C.; Prabonnaud, V.; Rockstroh, M.-P.; Schaeffer, P.; Servant, O.;
Thurneyssen, O.; Soubrié, P.; Pascal, M.; Maffrand, J.-P.; Le Fur, G. JPET 1999,
289, 742.
14. (a) Castillo, E. J.; Delgado-Aros, S.; Camilleri, M.; Burton, D.; Stephens, D.;
O’Connor-Semmes, R.; Walker, A.; Shachoy-Clark, A.; Zinsmeister, A. R. . Am. J.
Physiol. Gastrointest. Liver Physiol. 2004, 287, G363; (b) Jordan, J.; Greenway, F.
L.; Leiter, L. A.; Li, Z.; Jacobson, P.; Murphy, K.; Hill, J.; Kler, L.; Aftring, R. P. Clin.
Pharmacol. Ther. 2008, 83, 281.
15. (a) Zhu, C.; Hansen, A. R.; Bateman, T.; Chen, Z.; Holt, T. G.; Hubert, J. A.;
Karanam, B. V.; Lee, S. J.; Pan, J.; Qian, S.; Reddy, V. B. G.; Reitman, M. L.; Strack,
A. M.; Tong, V.; Weber, A.; Weingarth, D. T.; Wolff, M. S.; MacNeil, D. J.; Weber,
A. E.; Duffy, J. L.; Edmondson, S. D. Bioorg. Med. Chem. Lett. 2008, 18, 4393; (b)
Berger, R.; Edmondson, S. E.; Hansen, A. R.; Zhu, C. Substituted imidazole
4-carboxamides as cholecystokinin-1 receptor modulators. WO2007120688,
2007.
16. Ueki, H.; Ellis, T. K.; Martin, C. H.; Boettiger, T. U.; Bolene, S. B.; Soloshonok, V.
A. J. Org. Chem. 2003, 68, 7104.
17. Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722.
18. (a) Pan, J.; Weingarth, D. T.; Qian, S.; Morin, N.; Edmondson, S. D.; Zhu, C.;
Berger, R.; Hansen, A. R.; Lee, S. J.; Hubert, J. A.; Strack, A. M.; MacNeil, D. J., in
preparation; (b) All CCK1R EC50 values are human IP3 (NFAT) agonist data
except in Table 4 which are mouse CCK1R IP3 data. CCK1R % activations are
expressed as the % of activation relative to CCK-8. Additional assay protocols
are available in the Supporting information.
19. All CCK2R EC50 values are human IP3 agonist data and are an average of P3
experiments with standard deviations <75% of the average. CCK2 % activations
are expressed as the % of activation relative to CCK-8. CCK2R IC50s are an
average of P3 experiments with standard deviations <75% of the average.
Additional assay protocols are given in the Supporting information.
20. For a reference describing the ONFI studies in more detail: Lee, S. J.; Hubert, J.
A.; Edmondson, S. D.; Zhu, C.; Hansen, A. R.; Wolff, M. S.; Holt, T. G.; Karanam,
B. V.; Kumar, S.; Qian, S.; Weingarth, D. T.; Pan, J.; Weber, A. E.; MacIntyre, D. E.;
Strack, A. M.; MacNeil, D. J., manuscript in preparation.
21. Kopin, A. S.; Mathes, W. F.; McBride, E. W.; Nguyen, M.; Al-Haider, W.; Schmitz,
F.; Bonner-Weir, S.; Kanarek, R.; Beinborn, M. J. Clin. Invest. 1999, 103, 383.
22. GI tolerability findings consistent with diarrhea were observed in several of the
wild-type mice dosed with compound 40 (Table 5). There were no GI
tolerability findings observed with the CCK1Rꢀ/ꢀ mice. Subsequent
manuscripts describing the in vivo characteristics of selective CCK1R agonists
are currently in preparation.
Acknowledgments
The authors thank Ramona Gray and Amanda Makarewicz for
the scale-up of synthetic intermediates. The authors acknowledge
Tracy Johnson, Chris Nunes, Jim Hausamann, Bo Wang, and Lajla
de Reus for dosing the animals used in the pharmacokinetic exper-
iments. The authors also thank Alan Kopin at the Tufts University
School of Medicine for the use of CCK1Rꢀ/ꢀ mice.
Supplementary data
23. Sugg, E. E.; Birkemo, L.; Gan, L. L.; Tippin, T. K. Pharm. Biotechnol. 1998, 11, 507.
Supplementary data associated with this article can be found, in