6990
M. Alajarı´n et al. / Tetrahedron Letters 48 (2007) 6987–6991
C@C double bond, more specifically that bearing R1
(ArCO or ArSO2), which is now found in aminophos-
phane 9, whereas the second iminophosphoranyl func-
tion bearing R2 (Ar) remains at its original place.
regioselectivity and high levels of diastereoselectivity.
We have also shown that one iminophosphoranyl group
of 1,2-bis(iminophosphoranyl)ethenes, differently substi-
tuted at their two N atoms, can be replaced by an ArS
residue in a totally controlled way, under thermody-
namic equilibrium conditions, via an addition–elimina-
tion sequence.
These results can be reasonably approximated by
assuming an addition–elimination sequence of events.
First, a regioselective addition of thiol to the C@C bond
takes place,20 incorporating the R3S fragment to the less
substituted carbon of the starting alkene, to give 10
(Scheme 7). Then a b-elimination of aminophosphane
Ph2P–NH–R1 should occur for leading to final products
8 and 9. Note that the N atom of the P@N function,
notably electronegative by virtue of the contribution of
the ylidic +P–Nꢀ resonance form, can reasonably act
as an internal base promoting a 5-center concerted b-
elimination. However, a second alternative b-elimina-
tion is also conceivable involving the other iminophos-
phoranyl group of 10 and leading to the functionalized
alkene 11 and aminophosphane 12 Ph2P–NH–R2. Hav-
ing no doubt the reaction products are exclusively 8 and
9, we interpret the course of these processes as resulting
of a thermodynamic equilibrium between the product
couples 8/9 and 11/12 established across the sterically
congested tetrasubstituted ethane 10 under the reaction
conditions, in which the final composition of the reac-
tion mixture (8 + 9) is determined by the rather irrevers-
ible transformation step 10!8 + 9. The inverse reaction
8 + 9!10 should be quite slow due to the low nucleo-
philicity of N-acyl or sulfonyl aminophosphane 9 as a
result of the delocalization of the N lone pair over the
conjugated C@O or S@O bonds. On the contrary, N-
aryl aminophosphane 12 is able of adding efficiently to
11, thus sustaining their reversible equilibrium with 10.
In support of this last proposal, we have previously
established that N-aryl aminophosphanes add to the
C@C bond of P-alkenyl phosphazenes to yield 1,2-
bis(iminophosphoranyl)ethanes.3b
Acknowledgments
This work was supported by the MEC and FEDER
(Project CTQ2005-02323/BQU) and Fundacio´n Se´neca-
CARM (Project 00458/PI/04). P.L.-L. also thanks Fun-
dacio´n Se´neca-CARM for a fellowship.
References and notes
1. (a) Portnoy, N. A.; Morrow, C. J.; Chattha, M. S.;
Williams, J. C.; Aguiar, A. M., Jr. Tetrahedron Lett. 1971,
12, 1397–1400; (b) Maumy, M. Bull. Soc. Chim. Fr. 1972,
1600–1603; (c) Ma¨rkl, G.; Merkl, B. Tetrahedron Lett.
1983, 24, 5865–5868; (d) Kawashima, T.; Miki, Y.;
´
Inamoto, N. Chem. Lett. 1986, 1883–1884; (e) Lecercle,
D.; Sawacki, M.; Taran, F. Org. Lett. 2006, 8, 4283–4285;
(f) Huang, X.; Xu, L. Synthesis 2006, 231–236.
´
2. Louattani, E.; Lledos, A.; Suades, J.; Alvarez-Larena, A.;
Piniella, J. F. Organometallics 1995, 14, 1053–1060.
´
´
3. (a) Alajarın, M.; Lopez-Leonardo, C.; Llamas-Lorente,
P.; Bautista, D.; Jones, P. G. Dalton Trans. 2003, 426–434;
´
´
(b) Alajarın, M.; Lopez-Leonardo, C.; Llamas-Lorente, P.
Lett. Org. Chem. 2004, 1, 145–147.
4. Averin, A. D.; Lukashev, N. V.; Borisenko, A. A.;
Kazankova, M. A.; Beletskaya, I. P. Zh. Org. Khim.
1995, 31, 400–407; Averin, A. D.; Lukashev, N. V.;
Borisenko, A. A.; Kazankova, M. A.; Beletskaya, I. P.
Chem. Abstr. 1995, 124, 146271.
5. Galishev, V. A.; Chistokletov, V. N.; Petrov, A. A.;
Tamm, L. A. Zh. Obshch. Khim. 1973, 43, 1470–1472;
Chem. Abstr. 1974, 80, 1509.
In summary the present investigations have explored the
addition of amines, thiols and aminophosphanes to
P-ethynyl-P,P-diphenyl-k5-phosphazenes. The resulting
tri-substituted alkenes have been obtained with total
6. Heydt, H.; Regitz, M. Justus Liebigs Ann. Chem. 1977,
1766–1786.
7. (a) Charrier, C.; Simonnin, M.-P.; Chodkiewicz, W.;
Cadiot, P. Compt. Rend. 1964, 258, 1537–1540; (b) Liu,
B.; Wang, K. K.; Petersen, J. L. J. Org. Chem. 1996, 61,
8503–8507; (c) Kondoh, A.; Yorimitsu, H.; Oshima, K. J.
Am. Chem. Soc. 2007, 129, 4099–4104.
8. (a) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2,
635–646; (b) Gololobov, Y. G.; Kasukhin, L. F. Tetra-
hedron 1992, 48, 1353–1406; (c) Johnson, A. W.; Kaska,
W. C.; Ostoja-Starzewski, K. A.; Dixon, D. A. In Ylides
and Imines of Phosphorus; Johnson, A. W., Ed.; Wiley:
New York, 1993; pp 403–483.
R2
R2
N
R3-S
Ph2P
H
N
R3-SH
PPh2
PPh2
Ph2P
N
Ph
H
Ph
N
R1
R1
3
10
9. Dickstein, J. I.; Millar, S. I. In The Chemistry of the
Carbon–Carbon Triple Bond, Part 2; Patai, S., Ed.; Wiley:
Chichester, 1978; pp 813–955.
10. (a) Duncan, M.; Gallager, M. Org. Magn. Reson. 1981, 15,
37–42; (b) Panarina, A. E.; Dogadina, A. V.; Zakharov, V.
I.; Ionin, B. I. Tetrahedron Lett. 2001, 42, 4365–4368.
11. (a) Masuda, J. D.; Wei, P.; Stephan, D. W. Dalton Trans.
2003, 3500–3505; (b) Masuda, J. D.; Walsh, D. M.; Wei,
P.; Stephan, D. W. Organometallics 2004, 23, 1819–1824.
R2
R3-S
N
Ph
Ph P-NH-R1
Ph P-NH-R2
PPh2
Ph2P
+
+
R3-S
2
2
N
R1
Ph
8
9
11
12
R1 = 4-CH3C6H4CO, 4-CH3C6H4SO2
R2 = 4-CH3C6H4, 4-CH3OC6H4
R3 = 4-CH3C6H4, 4-CH3OC6H4
´
´
12. Alajarın, M.; Lopez-Leonardo, C.; Llamas-Lorente, P.
Top. Curr. Chem. 2005, 250, 77–106.
´
´
13. Alajarın, M.; Lopez-Leonardo, C.; Llamas-Lorente, P.
Scheme 7.
Synlett 2003, 801–804.