Molecules 2015, 20
11150
11. El-Mahdy, G.A.; Atta, A.M.; Al-Lohedan, H.A. Synthesis and characterizations of Fe3O4 nanogel
composite for enhancement of the corrosion resistance of steel in HCl solutions. J. Taiwan Inst.
Chem. Eng. 2014, 45, 1947–1953.
12. Behzadnasab, M.; Mirabedini, S.; Esfandeh, M. Corrosion protection of steel by epoxy nanocomposite
coatings containing various combinations of clay and nanoparticulate zirconia. Corros. Sci. 2013, 75,
134–144.
13. Gergely, A.; Pfeifer, E.; Bertoti, I.; Torok, T.; Kalman, E. Corrosion protection of cold-rolled steel
by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrrole. Corros. Sci.
2011, 53, 3486–3499.
14. Saremi, M.; Yeganeh, M. Application of mesoporous silica nanocontainers as smart host of corrosion
inhibitor in polypyrrole coatings. Corros. Sci. 2014, 86, 159–170.
15. Sababi, M.; Pan, J.; Augustsson, P.E.; Sundell, P.E.; Claesson, P.M. Influence of polyaniline and ceria
nanoparticle additives on corrosion protection of a UV-cure coating on carbon steel. Corros. Sci.
2014, 84, 189–197.
16. Doner, A.; Solmaz, R.; Ozcan, M.; Karda, G. Experimental and theoretical studies of thiazoles as
corrosion inhibitors for mild steel in sulphuric acid solution. Corros. Sci. 2011, 53, 2902–2913.
17. Likhanova, N.V.; Dom nguez-Aguilar, M.A.; Olivares-Xometl, O.; Nava-Entzana, N.; Arce, E.;
Dorantes, H. The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion
inhibition of mild steel in acidic environment. Corros. Sci. 2010, 52, 2088–2097.
18. Zhang, Q.; Hua, Y. Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in
hydrochloric acid. Electrochim. Acta 2009, 54, 1881–1887.
19. Lin, P.C.; Sun, I.W.; Chang, J.K.; Su, C.J.; Lin, J.C. Corrosion characteristics of nickel, copper,
and stainless steel in a Lewis neutral chloroaluminate ionic liquid. Corros. Sci. 2011, 53, 4318–4323.
20. Tüken, T.; Demir, F.; Kicir, N.; Sigircik, G.; Erbil, M. Inhibition effect of 1-ethyl-3-methylimidazolium
dicyanamide against steel corrosion. Corros. Sci. 2012, 59, 110–118.
21. Wang, Y.C.; Lee, T.C.; Lin, J.Y.; Chang, J.K.; Tseng, C.M. Corrosion properties of metals in
dicyanamide-based ionic liquids. Corros. Sci. 2014, 78, 81–88.
22. Gu, T.; Chen, Z.; Jiang, X.; Zhou, L.; Liao, Y.; Duan, M.; Wang, H.; Pu, Q. Synthesis and
inhibition of N-alkyl-2-(4-hydroxybut-2-ynyl) pyridinium bromide for mild steel in acid solution:
Box–Behnken design optimization and mechanism probe. Corros. Sci. 2015, 90, 191–197.
23. Perissi, I.; Bardi, U.; Caporali, S.; Lavacchi, A. High temperature corrosion properties of ionic
liquids. Corros. Sci. 2006, 48, 2349–2362.
24. Kowsari, E.; Payami, M.; Amini, R.; Ramezanzadeh, B.; Javanbakht, M. Task-specific ionic
liquid as a new green inhibitor of mild steel corrosion. Appl. Surf. Sci. 2014, 289, 478–486.
25. Huang, P.; Latham, J.-A.; MacFarlane, D.R.; Howlett, P.C.; Forsyth, M. A review of ionic liquid
surface film formation on Mg and its alloys for improved corrosion performance. Electrochim. Acta
2013, 110, 501–510.
26. Reynolds, J.L.; Erdner, K.R.; Jones, P.B. Photoreduction of benzophenones by amines in
room-temperature ionic liquids. Org. Lett. 2002, 4, 917–919.
27. Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D. Mannich reaction using acidic ionic liquids
as catalysts and solvents. Green Chem. 2004, 6, 75–77.