DOI: 10.1039/C3CC46146G
Page 3 of 4
ChemComm
60 2 (a) J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes and B.
Charleux, Prog. Polym. Sci., 2013, 38, 63-235; (b) C. J. Hawker, A.
W. Bosman and E. Harth, Chem. Rev., 2001, 101, 3661-3688.
further highlights that benzyl ethers remain unaffected under
these conditions. In the case of anthracene methoxyamines such
as 9, deprotection was observed to produce the nitroxide 10 in
good yield (75%), however small amounts of fluorescent side-
5 products were also detected (Table 1, entry 7 and 8). These 65
products are expected to arise from partial oxidation of the
anthracene core to give substituted anthraquinones, perhaps via
the corresponding endoperoxides.24 Notably, the formation of by-
products could be minimised using shorter reaction times and
10 decreased equivalents of mCPBA. In the presence of anthracenes
with alkyne side-chains, such as in 11, the deprotection gave the
desired nitroxide 12 in reasonable yield (67%) along with similar
3
(a) G. Gryn'ova, K. U. Ingold and M. L. Coote, J. Am. Chem. Soc.,
2012, 134, 12979-12988; (b) Gugumus, F. in Handbook of Polymer
Degradation, 2nd ed.; Halim Hamid, S., Ed.; Marcel Dekker: New
York, 2000; p 1; (c) K. E. Fairfull-Smith, J. P. Blinco, D. J. Keddie,
G. A. George and S. E. Bottle, Macromolecules, 2008, 41, 1577-
1580.
(a) J. P. Blinco, K. E. Fairfull-Smith, A. S. Micallef and S. E. Bottle,
70 4 Polym. Chem. 2010, 1, 1009-1012; (b) J. Kullis ,C. A. Bell, A. S.
Micallef, Z. Jia and M. Montiero, Macromolecules, 2009, 42, 8218-
8227.
5
(a) J. P. Blinco, B. A. Chalmers, A. Chou, K. E. Fairfull-Smith and S.
E. Bottle, Chem. Sci., 2013, 4, 3411-3415; (b) H. Wagner, M. K.
Brinks, M. Hirtz, A. Schäfer, L. Chi, and A. Studer, Chem. Eur. J.,
2011, 17, 9107 – 9112.
fluorescent by-products as were seen with 9. These by-products
75
may also include small amounts of peracid oxidation of the
15 alkyne (Table 1, entry 9).25 Again, these side reactions could be
minimised by immediate quenching of the reaction upon
6
S. A. Shelke and S. T. Sigurdsson in Spin-labels and Intrinsic
Paramagnetic Centers in the Biosciences: Structural Information
From Distance Measurements, Structure and Bonding Book Series;
C. Timmel, Ed; Springerlink, 2011, 1-42.
consumption of the starting material (followed via TLC). The
80
nitro group was shown to be quite stable under the deprotection
conditions with a high yield (85%) of nitroxide 14 arising from
20 the treatment of methoxyamine 13 (Table 1, entry 10). However,
7
8
I. Ratera and J. Veciana, Chem. Soc. Rev., 2012, 41, 303–349.
10.1021/ja405813t.
(a) D. I. Pattison, M. Lam, S. S. Shinde, R. F. Anderson and M. J.
Davies, Free Rad. Biol. Med., 2012, 53, 1664-1674; (b) J. R. Walker,
K. E. Fairfull-Smith, K. Anzai, S. Lau, P. J. White, P. J. Scammells
and S. E. Bottle, Med. Chem. Commun., 2011, 2, 436-441; (c) K.
Hosokawa, P. Chen, M. F. Lavin and S. E. Bottle, Free Rad. Biol.
Med., 2004, 37, 946-952.
attempted
deprotection
of
5-amino-2-methoxy-1,1,3,3-
85
90
95
tetramethylisoindoline by mCPBA gave multiple products after
only a few minutes, as indicated by TLC, consistent with
competitive oxidation of the primary aryl amine.
9
25 We have shown the methoxyamine group to be a highly
efficient, chemically robust protecting group for nitroxide
syntheses. The introduction of the methyl group was achieved for
a variety of nitroxides under mild conditions and in high yield
using methyl radicals generated from DMSO, ferrous ions and
30 hydrogen peroxide. Removal of the methyl protecting group was
readily achieved using mCPBA in DCM in the presence of a
variety of functional groups. The facile nature of the Cope-type
elimination allows for the methyl ether to be readily cleaved
10 G. Gryn'ova, J. M. Barakat, J. P. Blinco, S. E. Bottle and M. L. Coote
Chem. - Eur. J., 2012, 18, 7582-7593; (b) Z. Zhang, P. Chen, T. N.
Murakami, S. M. Zakeeruddin and M. Graetzel, Adv. Funct. Mater.,
2008, 18, 341-346.
11 T. Ibe, R. B. Frings, A. Lachowicz, S. Kyo and H. Nishide, Chem.
Commun., 2010, 46, 3475-3477; (b) T. Janoschka, M. D. Hager and
U. S. Schubert, Adv. Mater., 2012, 24, 6397-6409.
(a) D. J. Keddie, T. E. Johnson, D. P. Arnold and S. E. Bottle, Org.
before any significant side reactions occur. If side reactions are100 12 Biomol. Chem., 2005, 3, 2593-2598; (b) D. J. Keddie, K. E. Fairfull-
Smith and S. E. Bottle, Org. Biomol. Chem., 2008, 6, 3135-3143; (c)
35 possible through over oxidation, then careful monitoring of the
K. E. Fairfull-Smith and S. E. Bottle, Eur. J. Org. Chem., 2008, 32,
5391-5400.
reaction and the use of limited amounts of mCPBA can still
provide the nitroxide in good yield. In this way, deprotection can
13 J. C. Morris, J. C. McMurtrie, S. E Bottle and K. E. Fairfull-Smith, J.
be induced in good to high yields (67-88%). This new nitroxide
protecting group strategy should now enable a large range of
40 synthetic transformations that were not previously possible in the
presence of the nitroxide radical and thereby substantially
broaden the scope of possible nitroxide applications.
105
Org. Chem., 2011, 76, 4964-4972.
14 T. Kalai, B. Bognar, D. Zsolnai, Z. Berente and K. Hideg, Synthesis,
2012, 24, 3655-3660.
15 (a) K. E. Fairfull-Smith, E. A. Debele, J. P. Allen, M. C. Pfrunder
and J. C. McMurtrie, Eur. J. Org. Chem., 2013, 22, 4829-4835; (b) T.
Kálai, E. Borza, C. Antus, B. Radnai, G. Gulyás-Fekete, A. Fehér, B.
Sümegi and K. Hideg, Bioorg. Med. Chem., 2011, 19, 7311-7317.
16 K. E. Fairfull-Smith, F. Brackmann and S. E. Bottle, Eur. J. Org.
Chem., 2009, 12, 1902-1915.
110
Notes and references
aARC Centre of Excellence for Free Radical Chemistry and
45 Biotechnology, Faculty of Science and Engineering, Queensland
University of Technology, 2 George St, Brisbane, QLD 4001, Australia
b School of Chemistry, University of Birmingham, Edgbaston,
(a) J. P. Galbo, United States Patent, 1993, US5374729 A; (b) H.-Y.
115 17 Ahn, K. E. Fairfull-Smith, B. J. Morrow, V. Lussini, B. Kim, M. V.
Bondar, S. E. Bottle and K. D. Belfield, J. Am. Chem. Soc., 2012,
134, 4721-4730.
18 K.-U. Schoening, W. Fischer, S. Hauck, A. Dichtl and M. Kuepfert,
J. Org. Chem., 2009, 74, 1567-1573.
50 B†iErmleicntgrohnaimc B15 2TT, UK
Supplementary Information (ESI) available: [Full
experimental procedures; 1H and 13C NMR spectra for compounds 1, 3, 5,
7 and 13; HPLC chromatograms for compounds 1, 2, 5-8, 13 and 14]. See
DOI: 10.1039/b000000x/
120 19 D. Gigmes, A. Gaudel-Siri, S. R. A. Marque, D. Bertin, P. Tordo, P.
Astolfi, L. Greci and C. Rizzoli, Helv. Chim. Acta, 2006, 89, 2312-
2326.
20 G. O'Brya and R. Braslau, Macromolecules, 2006, 39, 9010-9017.
21 S. D. Burke and R. L. Danheiser, Handbook of Reagents for Organic
Synthesis: Oxidizing and Reducing Agents; Wiley: Chichester, 1999.
22 (a) L. R. Subbaraman, J. Subbaraman and E. J. Behrman,
Biochemistry, 1969, 8, 3059-3066; (b) J. C. Craig and K. K.
Purushothaman, J. Org. Chem., 1970, 35, 1721-1722.
(a) L. Teben and A. Studer, Angew. Chem., 2011, 50, 5034-5068; (b)
55 1 G. Likhtenshtein, J. Yamauchi, S. Nakatsuji, A. I. Smirnov and R.
Tamura, Nitroxides: Applications in Chemistry, Biomedicine, and125
Materials Science.; Wiley-VCH: Weinheim, 2008; (c) J. P .Blinco, B.
J. Morrow, K. E. Fairfull-Smith and S. E. Bottle, Aust. J. Chem.,
2011, 64, 373-389.
130 23 Lett. 1986, 27, 1119-1122.
M. F. Semmelhack, C. R. Schmid and D. A. Cartes, Tetrahedron