10.1002/anie.201702885
Angewandte Chemie International Edition
COMMUNICATION
[6]
a) H. Eto, C. Eguchi, Chem. Lett. 1988, 17, 1597-1600; b) J.-H. Min, J.-
S. Lee, J.-D. Yang, S. Koo, J. Org. Chem. 2003, 68, 7925-7927; c) E.-T.
Oh, H. Jin Kim, J. Taek Oh, L. Su, I. Yun, K. Nam, J.-H. Min, J. Woo Kim,
S. Koo, Eur. J. Org. Chem. 2012, 2012, 4954-4962.
In summary, allylation and benzylation of quinone were
accomplished by an unexpected mechanism: redox chain
reaction. This transformation would be useful in the syntheses of
allyl and benzyl quinone derivatives with potential utility in
pharmaceutical and materials research. These efforts are
ongoing in this lab.
[7]
[8]
S. Yamago, M. Hashidume, J. Yoshida, Tetrahedron 2002, 58, 6805-
6813.
a) S. Murahashi, A. Fujii, Y. Inubushi, N. Komiya, Tetrahedron Lett. 2010,
51, 2339-2341; b) S. Murahashi, N. Miyaguchi, S. Noda, T. Naota, A.
Fujii, Y. Inubushi, N. Komiya, Eur. J. Org. Chem. 2011, 2011, 5355-5365.
a) M. Inoue, T. Uragaki, S. Enomoto, Chem. Lett. 1986, 15, 2075-2078;
b) T. Sakamoto, H. Yonehara, C. Pac, J. Org. Chem. 1997, 62, 3194-
3199; c) H. Miyamura, M. Shiramizu, R. Matsubara, S. Kobayashi,
Angew. Chem., Int. Ed. 2008, 47, 8093-8095; Angew. Chem., 2008, 120,
8213-8215; d) C. W. Anson, S. Ghosh, S. Hammes-Schiffer, S. S. Stahl,
J. Am. Chem. Soc. 2016, 138, 4186-4193.
[9]
Acknowledgements
Financial support for this work was generously provided by the
“1000 Talents Plan for Young Professionals” Start-up funding,
National Natural Science Foundation of China (Grant No.
21673141) and ShanghaiTech University start-up funding. We
thank Shanghai Advanced Research Institute, CAS for supporting
lab space, and the graduate program of Shanghai Institute of
Organic Chemistry, CAS for supporting X.X. We thank Dr. Huawei
Liu for NMR expertise, and Dr. Fei Zhao for HRMS expertise.
[10] a) Y. Naruta, J. Org. Chem. 1980, 45, 4097-4104; b) Rutger B. Boers,
Yolanda P. Randulfe, Hendrikus N. S. van d. Haas, Marleen v. Rossum-
Baan, J. Lugtenburg, Eur. J. Org. Chem. 2002, 2002, 2094-2108; c) H.-
P. Deng, D. Wang, K. J. Szabó, J. Org. Chem. 2015, 80, 3343-3348.
[11] S. Mashraqui, P. Keehn, Synth. Commun. 1982, 12, 637-645.
[12] M. Shiraishi, K. Kato, S. Terao, Y. Ashida, Z. Terashita, G. Kito, J. Med.
Chem. 1989, 32, 2214-2221.
[13] a) B. H. Lipshutz, P. Mollard, S. S. Pfeiffer, W. Chrisman, J. Am. Chem.
Soc. 2002, 124, 14282-14283; b) B. H. Lipshutz, A. Lower, V. Berl, K.
Schein, F. Wetterich, Org. Lett. 2005, 7, 4095-4097; c) B. H. Lipshutz, T.
Butler, A. Lower, J. Servesko, Org. Lett. 2007, 9, 3737-3740.
Keywords: alkylation • quinones • redox chemistry • synthetic
methods
[1]
a) B. L. Trumpower, Function of Quinones in Energy Conserving
Systems, Academic Press, New York, 1982; b) A. Brunmark, E. Cadenas,
Free Radical Bio. Med. 1989, 7, 435-477; c) B. Nowicka, J. Kruk, Biochim.
Biophys. Acta-Bioenergetics 2010, 1797, 1587-1605; d) J. Kim, in
Quinones: Occurrence, Medicinal Uses and Physiological Importance
(Eds.: E. R. Price, S. C. Johnson), Nova Science Publishers, Inc., New
York, 2013, pp. 57-87.
[14] E. Negishi, S.-Y. Liou, C. Xu, S. Huo, Org. Lett. 2002, 4, 261-264.
[15] a) Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio, M. Del Bel, P.
S. Baran, J. Am. Chem. Soc. 2011, 133, 3292-3295; b) J. Wang, S. Wang,
G. Wang, J. Zhang, X.-Q. Yu, Chem. Commun. 2012, 48, 11769-11771;
c) P. P. Singh, S. K. Aithagani, M. Yadav, V. P. Singh, R. A. Vishwakarma,
J. Org. Chem. 2013, 78, 2639-2648; d) A. Ilangovan, S. Saravanakumar,
S. Malayappasamy, Org. Lett. 2013, 15, 4968-4971.
[2]
[3]
a) L. Ernster, G. Dallner, Biochim. Biophys. Acta-Mol. Basis Dis. 1995,
1271, 195-204; b) G. Lenaz, R. Fato, G. Formiggini, M. L. Genova,
Mitochondrion 2007, 7, Supplement, S8-S33; c) M. Bentinger, M. Tekle,
G. Dallner, Biochem. Biophys. Res. Commun. 2010, 396, 74-79; d) M. L.
Genova, G. Lenaz, Biofactors 2011, 37, 330-354.
[16] a) S. Zhang, F. Song, D. Zhao, J. You, Chem. Commun. 2013, 49, 4558-
4560; b) S. E. Walker, J. A. Jordan-Hore, D. G. Johnson, S. A. Macgregor,
A.-L. Lee, Angew. Chem., Int. Ed. 2014, 53, 13876-13879; Angew.
Chem., 2014, 126, 14096-14099.
[17] N. Z. Burns, P. S. Baran, R. W. Hoffmann, Angew. Chem., Int. Ed. 2009,
48, 2854-2867; Angew. Chem., 2009, 121, 2896-2910.
a) L. P. Kegel, F. L. Crane, Nature 1962, 194, 1282-1282; b) K. Brettel,
W. Leibl, Biochim. Biophys. Acta-Bioenergetics 2001, 1507, 100-114; c)
P. Fromme, P. Mathis, Photosynth. Res. 2004, 80, 109-124; d) N.
Srinivasan, J. H. Golbeck, Biochim. Biophys. Acta-Bioenergetics 2009,
1787, 1057-1088; e) F. L. Crane, Photosynth. Res. 2010, 103, 195-209;
f) S. Ohashi, T. Iemura, N. Okada, S. Itoh, H. Furukawa, M. Okuda, M.
Ohnishi-Kameyama, T. Ogawa, H. Miyashita, T. Watanabe, S. Itoh, H.
Oh-oka, K. Inoue, M. Kobayashi, Photosynth. Res. 2010, 104, 305-319;
g) H. K. Lichtenthaler, in Progress in Botany: Vol. 76 (Eds.: U. Lüttge, W.
Beyschlag), Springer International Publishing, Cham, 2015, pp. 3-42.
a) P. R. Dandawate, A. C. Vyas, S. B. Padhye, M. W. Singh, J. B. Baruah,
Mini Rev. Med. Chem. 2010, 10, 436-454; b) I. C. Ferreira, J. A. Vaz, M.
H. Vasconcelos, A. Martins, Anti-cancer Agents Med. Chem. 2010, 10,
424-436; c) S. N. Sunassee, M. T. Davies-Coleman, Nat. Prod. Rep.
2012, 29, 513-535.
[18] a) T. L. Lohr, Z. Li, R. S. Assary, L. A. Curtiss, T. J. Marks, ACS Catal.
2015, 5, 3675-3679; b) T. L. Lohr, Z. Li, T. J. Marks, ACS Catal. 2015, 5,
7004-7007; c) T. L. Lohr, Z. Li, R. S. Assary, L. A. Curtiss, T. J. Marks,
Energ. Environ. Sci. 2016, 9, 550-564; d) T. L. Lohr, Z. Li, T. J. Marks,
Acc. Chem. Res. 2016, 49, 824-834.
[19] Acid-catalyzed: a) X. Han, J. Wu, Angew. Chem., Int. Ed. 2013, 52, 4637-
4640; Angew. Chem., 2013, 125, 4735-4738; Base-promoted: b) R. H.
Cornforth, R. Robinson, J. Chem. Soc. 1942, 680-682; c) J. W. Cornforth,
R. H. Cornforth, R. Robinson, J. Chem. Soc. 1942, 682-684; d) C. Liu, S.
Liao, Q. Li, S. Feng, Q. Sun, X. Yu, Q. Xu, J. Org. Chem. 2011, 76, 5759-
5773; e) Q. Xu, Q. Li, X. Zhu, J. Chen, Adv. Synth. Catal. 2013, 355, 73-
80; f) Q. Xu, J. Chen, H. Tian, X. Yuan, S. Li, C. Zhou, J. Liu, Angew.
Chem., Int. Ed. 2014, 53, 225-229; Angew. Chem., 2014, 126, 229-233.
[20] P. Wardman, J. Phys. Chem. Ref. Data 1989, 18, 1637-1755.
[21] The exchange reaction between Q and HQ-R was completed in 1 h at
room temperature even without any Lewis acid catalyst (See detailed
examples in the Supporting Information).
[4]
[5]
a) G. G. Wildgoose, P. Abiman, R. G. Compton, J. Mater. Chem. 2009,
19, 4875-4886; b) Q. Miao, Synlett 2012, 2012, 326-336; c) S. B. Kim, R.
D. Pike, D. A. Sweigart, Acc. Chem. Res. 2013, 46, 2485-2497; d) W.
Ma, Y.-T. Long, Chem. Soc. Rev. 2014, 43, 30-41; e) M. Boota, C. Chen,
M. Becuwe, L. Miao, Y. Gogotsi, Energ. Environ. Sci. 2016; f) Y. Ding, G.
Yu, Angew. Chem., Int. Ed. 2016, 55, 4772-4776; Angew. Chem. 2016,
128, 4850-4854; g) K. Pirnat, G. Mali, M. Gaberscek, R. Dominko, J.
Power Sources 2016, 315, 169-178.
[22] In ethyl acetate the reaction afforded 70% yield of alkylated
hydroquinone (See supporting information).
This article is protected by copyright. All rights reserved.