M.-H. Gouy et al. / Carbohydrate Research 342 (2007) 2303–2308
2307
at ꢀ78 ꢁC, the mixture was warmed to rt and stirred fur-
References
ther for 15 min. Saturated aqueous ammonium chloride
(5 mL) was then added and the products were extracted
by CH2Cl2 (3 · 10 mL). The combined organic layers
were filtered, dried and concentrated under reduced
pressure, and flash chromatography (CH2Cl2/Me2CO,
9:1 v/v) of the residue provided the triol 5 (100 mg,
63%) as a colourless oil. The same procedure applied
to tert-butyl triester 4 gave triol 5 in 46% yield. Com-
1. Molinier, V.; Kouwer, P. H.; Fitremann, J.; Bouchu, A.;
Mackenzie, G.; Queneau, Y.; Goodby, J. W. Chem. Eur. J.
2007, 13, 1763–1775.
2. Molinier, V.; Kouwer, P. H.; Fitremann, J.; Bouchu, A.;
Mackenzie, G.; Queneau, Y.; Goodby, J. W. Chem. Eur. J.
2006, 12, 3547–3557.
3. Molinier, V.; Fenet, B.; Fitremann, J.; Bouchu, A.;
Queneau, Y. Carbohydr. Res. 2006, 341, 1890–1895.
4. Potier, P.; Bouchu, A.; Gagnaire, J.; Queneau, Y. Tetra-
hedron: Asymmetry 2001, 12, 2409–2419.
5. For a review on H-labelled carbohydrates, see: Barnett, J.
E. G.; Corina, D. L. Adv. Carbohydr. Chem. Biochem.
1972, 27, 127–190.
6. Birschwilks, M.; Haupt, S.; Hofius, D.; Neumann, N. J.
Exp. Bot. 2006, 57, 911–921.
7. Rice, A.; Liu, Y.; Michaelis, M. L.; Himes, R. H.; Georg,
G. I.; Audus, K. L. J. Med. Chem. 2005, 48, 832–838.
8. Kaplan, H.; Hutkins, R. W. Appl. Environ. Microbiol.
2003, 69, 2217–2222.
9. Lemoine, R.; Daie, J.; Wyse, R. Plant Physiol. 1988, 86,
575–580.
10. Card, P. J.; Hitz, W. D. J. Am. Chem. Soc. 1984, 106,
5348–5350.
20
pound 5: ½aꢁD +10 (c 1.2, CH2Cl2). HRMS-FAB+:
[M+Li]+ 805.4046; found, 805.4051. Anal. Calcd for
C47H46D6O11: C, 70.7; H + D, 7.3. Found: C, 70.5;
1
H + D, 7.0. H NMR (CDCl3, 500 MHz) d 1.90, 2.79,
3.36 (3s, 3H, 3OH); 3.57 (t, 1H, J3–4 = 9.5 Hz,
J4–5 = 9.8 Hz, H-4); 3.64 (dd, 1H, J2–3 = 9.8 Hz, H-2);
3.98 (s, 1H, H-50); 4.05 (d, 1H, J3 –4 ¼ 5:1 Hz, H-40);
4.09 (t, 1H, J2–3 = 9.5 Hz, H-3); 4.12–4.19 (m, 2H, H-
5, H-30); 4.52–5.01 (m, 10H, CH2Ph); 5.31 (d, 1H,
J1–2 = 3.5 Hz, H-1); 7.28–7.49 (m, 25H, Ph). 13C NMR
(CDCl3, 75 MHz) d 73.02, 73.42 (2CH2Ph); 74.29 (C-
5); 75.65, 76.23 (3CH2Ph); 78.25 (C-4); 79.32 (C-2);
82.52 (C-3); 82.76 (C-40, C-50); 86.80 (C-30); 91.65 (C-
1); 106.56 (C-20); 128.27–138.90 (Ph).
0
0
11. Kollman, V. H.; Hanners, J. L.; Hutson, J. Y.; Whaley, T.
W.; Ott, D. G.; Gregg, C. T. Biochem. Biophys. Res.
Commun. 1973, 50, 826–831.
12. Kollman, V. H.; Hanners, J. L.; London, R. E.; Adame, E.
G.; Walker, T. E. Carbohydr. Res. 1979, 73, 193–202.
13. Hough, L.; O’Brien, E. Carbohydr. Res. 1980, 84, 95–102.
14. Hough, L.; O’Brien, E. Carbohydr. Res. 1981, 92, 314–317.
15. Tyrell, P. M.; Prestegard, J. H. J. Am. Chem. Soc. 1986,
108, 3990–3995.
16. Buchanan, G. B.; McManus, G.; Jarell, H. C. Chem. Phys.
Lipids 2000, 104, 23–34.
17. Cioffi, E. A.; Bell, R. H.; Le, B. Tetrahedron: Asymmetry
2005, 16, 471–475.
18. Koch, H. J.; Stuart, R. S. Carbohydr. Res. 1977, 59, C1–
C6.
19. Balza, F.; Cyr, N.; Hamer, G. K.; Perlin, A. S.; Koch, H.
J.; Stuart, R. S. Carbohydr. Res. 1977, 59, C7–C11.
20. Koch, H. J.; Stuart, R. S. Carbohydr. Res. 1978, 67, 341–
348.
1.5. 6,6,10,10,6,60-Hexadeuterosucrose (6)
To a solution of triol 5 (124 mg, 0.155 mmol) in EtOH
(2.2 mL) was added 10% Pd/C (80 mg) and the mixture
was stirred under H2 (1 atm) at rt for 2 h while water
was added regularly (total 2.2 mL) in order to maintain
the pH > 5. After centrifugation and filtration, the solu-
tion was evaporated to dryness and the pure deutero-
sucrose 6 white solid was freeze dried (54 mg, quant.).
20
½aꢁD +64 (c 0.9, H2O). HRMS-FAB+: [M+Na]+
(C12H16D6O11Na) 371.1436; found, 371.1442. Anal.
Calcd for C47H46D6O11: C, 70.7; H + D, 7.3. Found:
C, 70.5; H + D, 7.0. 1H NMR (CDCl3, 300 MHz) d
3.45 (t, 1H, H-4); 3.55 (dd, 1H, J2–3 = 9.9 Hz, H-2);
21. Cioffi, E. A.; Prestegard, J. H. Tetrahedron Lett. 1986, 27,
415–418, and references cited therein.
3.75 (t, 1H, J3–4 = 9.3 Hz, H-3); 3.82 (d, 1H, J4–5
=
22. Balza, F.; Perlin, A. S. Carbohydr. Res. 1982, 107, 270–
278.
23. Serianni, A. S.; Vuorinen, T.; Bondo, P. B. J. Carbohydr.
Chem. 1990, 9, 513–541.
24. Clarck, E. L., Jr.; Hayes, M. L.; Barker, R. Carbohydr.
Res. 1986, 153, 263–270.
25. Ohrui, H.; Horiki, H.; Kishi, H.; Meguro, H. Agric. Biol.
Chem. 1983, 47, 1101–1106; Ohrui, H.; Nishida, Y.;
Meguro, H. Agric. Biol. Chem. 1984, 48, 1049–1053.
26. Karl, H.; Lee, C. K.; Khan, R. Carbohydr. Res. 1982, 101,
31–38.
27. Jarosz, S. Polish J. Chem. 1996, 70, 972–987.
28. Jarosz, S.; Kosciolowska, I. Polish Patent, PL 177187 B1,
1999; Chem. Abstr., 2001, 134, 281070v.
10.1 Hz, H-5); 3.87 (d, 1H, J4 –5 ¼ 8:4 Hz, H-50); 4.04
0
0
(t, 1H, H-40); 4.20 (d, 1H, J3 –4 ¼ 8:8 Hz, H-30); 5.40
(d, 1H, J1–2 = 3.8 Hz, H-1). 13C NMR (D2O, 75 MHz)
d 69.59 (C-4); 71.46 (C-2); 72.67 (C-5); 72.96 (C-3);
74.36 (C-40); 76.76 (C-30); 81.66 (C-50); 92.58 (C-1);
104.03 (C-20).
0
0
Acknowledgements
This work was achieved in part in the former CNRS-
29. For a recent review on the oxidation of sucrose, in
particular using the NaOCl–TEMPO method, see: Tromb-
otto, S.; Violet-Courtens, E.; Cottier, L.; Queneau, Y.
Top. Catal. 2004, 27, 31–37.
30. Barbier, M.; Breton, T.; Servat, K.; Grand, E.; Kokoh, B.;
Kovensky, J. J. Carbohydr. Chem. 2006, 25, 253–266.
´
Beghin-Say joint research facility in Villeurbanne.
Financial support from CNRS and MENESR is grate-
fully acknowledged as well as a grant to MD from
CNRS and Beghin-Say (TEREOS). Also, the authors
´
thank Professeur A. Doutheau for fruitful discussions.