C O M M U N I C A T I O N S
considerable emissive quantum yield of both the free and Zn(II)-
bound fluorophores (Table 2), the fluorescence brightness δη
increased 5-fold from 11 to 55 GM, thus exceeding the brightness
of many fluorophores widely used in biology, including fluorescein,
BODIPY, DAPI, or GFP.3,4 Compared to fluorescein, 2 showed
also improved photostability (Supporting Information). Most im-
portantly, unlike fluorophores with a D-π-A-π-D architecture,
fluorescence emission of 2 is not reduced but substantially enhanced
upon Zn(II) coordination. It is worthwhile noting that at wavelengths
above 800 nm δ of 2 is negligible in the absence but strongly
enhanced in the presence of Zn(II), thus offering a strong turn-on
response (>10 000-fold increase) of the fluorescence emission in
this spectral range.
Figure 1. Absorption (left) and fluorescence emission (right) spectra for
the titration of fluorophore 2 (21 µM) with Zn(OTf)2 in MeOH.
In conclusion, we have demonstrated that metal-ion coordination
to the acceptor site of fluorophores with a D-A architecture results
not only in a significant increase of the TPA cross section and
brightness but also a substantial shift of the peak emission energy
suitable for ratiometric sensing. This approach is not limited to the
design of Zn(II) sensors but should be applicable to a broad range
of donor-acceptor fluorophores modified with tailored chelating
sites for selective metal-ion sensing.
Acknowledgment. Financial support by NIH (DK68096), NSF
CDMITR STC (DMR-0120967), ONR MURI (N00014-03-1-0793),
and NSF CRIF CHE-0443564 is gratefully acknowledged.
Figure 2. Two-photon excitation spectra of fluorophore 2 (100 µM solution
in MeOH) in the absence (b) and presence (O) of Zn(II).
Supporting Information Available: Procedures for the synthesis
1
of 1 and 2, complexation studies, H NMR titrations, and a summary
Table 2. Photophysical Dataa for Fluorophore 2 and [2-Zn]2+
of the computational results (Cartesian atomic coordinates for the
optimized geometries and the photophysical data). This material is
+
2
[2-Zn]2
absorption λmax (nm)
emission λmax (nm)
quantum yieldd
338 (2.15)b
441c
0.35
11
31 (690)
362 (2.27)b
497c
0.71
55
77 (730)
References
δη (GM)e
(1) So, P. T. C.; Dong, C. Y.; Masters, B. R.; Berland, K. M. Annu. ReV.
Biomed. Eng. 2000, 2, 399-429.
δ (GM) (λmax, nm)f
(2) (a) Zhang, M.; Gao, Y. H.; Li, M. Y.; Yu, M. X.; Li, F. Y.; Li, L.; Zhu,
M. W.; Zhang, J. P.; Yi, T.; Huang, C. H. Tetrahedron Lett. 2007, 48,
3709-3712. (b) Miller, E. W.; Albers, A. E.; Pralle, A.; Isacoff, E. Y.;
Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16652-16659. (c) Taki, M.;
Wolford, J. L.; O’Halloran, T. V. J. Am. Chem. Soc. 2004, 126, 712-
713. (d) Chang, C. J.; Nolan, E. M.; Jaworski, J.; Okamoto, K. I.; Hayashi,
Y.; Sheng, M.; Lippard, S. J. Inorg. Chem. 2004, 43, 6774-6779.
(3) Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481-491.
(4) Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Proc.
Natl. Acad. Sci. U.S.A. 1996, 93, 10763-10768.
a MeOH, 25 °C. b Molar extinction coefficient in parentheses [104 cm-1
M-1]. c Excitation at isosbestic point. d Quinine sulfate as reference. e Two-
photon action cross section. f Two-photon absorption cross section.
2 with Zn(II) in MeOH revealed a sharp isosbestic point and an
overall bathochromic shift of the peak absorption energy (Figure 1
and Table 2). Nonlinear least-squares fit analysis of the absorption
traces was consistent with a 1:1 ligand-Zn(II) binding mode and
yielded a dissociation constant of Kd ) 2.4 ( 0.1 µM. We
additionally confirmed the 1:1 stoichiometry by Job’s method and
1H NMR titration (Supporting Information).
In concurrence with the calculated photophysical properties
(Table 1), the fluorescence emission maximum of 2 was also shifted
to lower energy concomitant with an increase in quantum yield
upon saturation with Zn(II) (Figure 1 and Table 2). Nonlinear least-
squares fit analysis of the emission traces yielded within experi-
mental error an identical dissociation constant. Furthermore, analysis
of the ratio of emission intensities at 520 and 420 nm in the presence
of various biologically important cations revealed good selectivity
(5) Albota, M.; Beljonne, D.; Bre´das, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal,
A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-
Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, C.;
Webb, W. W.; Wu, X. L.; Xu, C. Science 1998, 281, 1653-1656.
(6) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.
Y.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.; Thayumanavan, S.;
Marder, S. R.; Beljonne, D.; Bre´das, J. L. J. Am. Chem. Soc. 2000, 122,
9500-9510.
(7) Woo, H. Y.; Liu, B.; Kohler, B.; Korystov, D.; Mikhailovsky, A.; Bazan,
G. C. J. Am. Chem. Soc. 2005, 127, 14721-14729.
(8) (a) Ahn, H. C.; Yang, S. K.; Kim, H. M.; Li, S. J.; Jeon, S. J.; Cho, B. R.
Chem. Phys. Lett. 2005, 410, 312-315. (b) Bozio, R.; Cecchetto, E.;
Fabbrini, G.; Ferrante, C.; Maggini, M.; Menna, E.; Pedron, D.; Ricco,
R.; Signorini, R.; Zerbetto, M. J. Phys. Chem. A 2006, 110, 6459-6464.
(c) Pond, S. J. K.; Tsutsumi, O.; Rumi, M.; Kwon, O.; Zojer, E.; Bre´das,
J. L.; Marder, S. R.; Perry, J. W. J. Am. Chem. Soc. 2004, 126, 9291-
9306.
(9) Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.;
Kannan, R.; Yuan, L. X.; He, G. S.; Prasad, P. N. Chem. Mater. 1998,
10, 1863-1874.
toward Zn(II) combined with a large dynamic range (Rmax/Rmin
)
46) suitable for sensitive ratiometric measurements (Supporting
Information).
(10) Kogej, T.; Beljonne, D.; Meyers, F.; Perry, J. W.; Marder, S. R.; Bre´das,
J. L. Chem. Phys. Lett. 1998, 298, 1-6.
In agreement with the theoretical predictions, δmax of 2 increased
from 31 to 77 GM upon saturation with Zn(II) in methanolic
solution. Similar to the one-photon absorption spectra, the peak
wavelength was also shifted to lower energy (Figure 2). Two-photon
excitation at 730 nm produced similar emission spectra compared
to one-photon excitation (Supporting Information). Given the
(11) Henary, M. M.; Wu, Y. G.; Fahrni, C. J. Chem.sEur. J. 2004, 10, 3015-
3025.
(12) Anderegg, G.; Hubmann, E.; Podder, N. G.; Wenk, F. HelV. Chim. Acta
1977, 60, 123-140.
(13) Charier, S.; Ruel, O.; Baudin, J. B.; Alcor, D.; Allemand, J. F.; Meglio,
A.; Jullien, L.; Valeur, B. Chem.sEur. J. 2006, 12, 1097-1113.
JA073240O
9
J. AM. CHEM. SOC. VOL. 129, NO. 39, 2007 11889