C. Görl et al. / Applied Catalysis A: General 403 (2011) 25–35
35
afforded increased amounts of 1-hexene (55–80%) in the C6 frac-
tions (see Table 2) and, therefore, lower amounts of isomerized and
branched hexenes were detected.
[14] A.S. Ionkin, W.J. Marshall, D.J. Adelman, B. Bobik Fones, B.M. Fish, M.F.
Schiffhauer, Organometallics 25 (2006) 2978–2992.
[15] V.C. Gibson, N.J. Long, P.J. Oxford, A.J.P. White, D.J. Williams, Organometallics
25 (2006) 1932–1939.
As indicated above, the meta-tert-butyl substituted complexes
49 and 50 featured lower tendencies towards isomerization
compared with the complexes bearing electron withdrawing
substituents (33–36). Due to the bulky tert-butyl groups, the coor-
dination of higher ␣-olefins to the iron centers is hindered resulting
in lower amounts of isomerized and branched olefins. The selectiv-
ities towards 1-hexene (among the C6 fraction) were determined
to 70.9% (49) and 73.0% (50), respectively, representing the highest
selectivity values among the ortho-unsubstituted complexes.
[16] Y.V. Kissin, C. Qian, G. Xie, Y. Chen, J. Polym. Sci. A: Chem. 44 (2006) 6159–6170.
[17] F.A.R. Kaul, G.T. Puchta, G.D. Frey, E. Herdtweck, W.A. Herrmann,
Organometallics 26 (2007) 988–999.
[18] D. Takeuchi, R. Matsuura, Y. Fukuda, K. Osakada, Dalton Trans. 41 (2009)
8955–8962.
[19] A.S. Ionkin, W.J. Marshall, D.J. Adelman, B. Bobik Fones, B.M. Fish, M.F.
Schiffhauer, R.E. Spence, T. Xie, Organometallics 27 (2008) 1147–1156.
[20] D. Takeuchi, R. Matsuura, S. Park, K. Osakada, J. Am. Chem. Soc. 129 (2007)
7002–7003.
[21] K.P. Tellmann, V.C. Gibson, A.J.P. White, D.J. Williams, Organometallics 24
(2005) 280–286.
[22] M. Seitz, H.G. Alt, A. Aburaqabah, S.J. Palackal, EP 1716924 (2006).
[23] R. Schmidt, B.M. Welch, R.D. Knudsen, S. Gottfried, H.G. Alt, J. Mol. Catal. A:
Chem. 222 (2004) 17–25.
[24] M. Lopez Reyes, C. Martin Marcos, O. Prieto Acedo, J. Sancho Royo, J. Campora
Perez, P. Palma Ramirez, A.M. Naz Lucena, C.M. Perez Rodriguez, EP 2003166
(2008).
4. Conclusion
Bis(arylimino)pyridine iron(III) complexes containing electron
withdrawing substituents in their ligand frameworks were synthe-
sized and characterized. After activation with methylaluminoxane
(MAO), the resulting catalysts proved to be highly active in ethylene
oligomerization reactions. Both the size and the electronegativity of
the substituents as well as their positions at the iminophenyl rings
strongly influence the product compositions. The major difference
of the iron(III) complexes compared with analogous iron(II) com-
plexes is the fact, that catalytic activities are also observed when
the iminophenyl rings of the ligand frameworks do not contain
substituents in ortho-positions to the former amino groups. These
iron(III) complexes did not only produce ␣-olefins, but also internal
and branched olefins. An explanation for this behaviour consid-
ers the coordination and insertion of small ␣-olefins like 1-butene
into the growing chains. In other words, these complexes are the
first examples for bis(arylimino)pyridine iron catalysts which seem
to be able to copolymerize ethylene with higher ␣-olefins and to
isomerize terminal into internal olefins.
[25] A. Rodriguez-Delgado, J. Campora, A.M. Naz, P. Palma, M.L. Reyes, Chem. Com-
mun. (2008) 5230–5232.
[26] R. Schmidt, U. Hammon, M.B. Welch, H.G. Alt, B.E. Hauger, R.D. Knudsen, US
6,458,905 (2002).
[27] I.S. Paulino, U. Schuchardt, J. Mol. Catal. A: Chem. 211 (2004) 55–58.
[28] Z. Zhang, J. Zou, N. Cui, Y. Ke, Y. Hu, J. Mol. Catal. A: Chem. 219 (2004) 249–254.
[29] C. Goerl, H.G. Alt, J. Organomet. Chem. 692 (2007) 4580–4592.
[30] A.S. Abu-Surrah, K. Lappalainen, U. Piironen, P. Lehmus, T. Repo, M. Leskelä, J.
Organomet. Chem. 648 (2002) 55–61.
[31] R.-F. Chen, C.-T. Qian, J. Sun, Chin. J. Chem. 19 (2001) 866–869.
[32] A.S. Ionkin, W.J. Marshall, D.J. Adelman, B. Bobik Fones, B.M. Fish, M.F.
Schiffhauer, P.D. Soper, R.L. Waterland, R.E. Spence, T. Xie, J. Polym. Sci. A:
Polym. Chem. 46 (2008) 585–611.
[33] C. Goerl, H.G. Alt, J. Mol. Catal. A: Chem. 273 (2007) 118–132.
[34] A.S. Ionkin, WO 2007059015 (2007).
[35] D.D. Devore, S.S. Feng, K.A. Frazier, J.T. Patton, WO 2000069923 (2000).
[36] K.P. Bryliakov, N.V. Semikolenova, V.N. Zudin, V.A. Zakharov, E.P. Talsi, Catal.
Commun. 5 (2004) 45–48.
[37] F. Prades, R. Spitz, C. Boisson, S. Sirol, A. Razavi, WO 2007014889 (2007).
[38] D. Gong, B. Wang, C. Bai, J. Bi, F. Wang, W. Dong, X. Zhang, L. Jiang, Polymer 50
(2009) 6259–6264.
[39] P. Hao, Y. Chen, T. Xiao, W.-H. Sun, J. Organomet. Chem. 695 (2010) 90–95.
[40] E.P. Talsi, D.E. Babushkin, N.V. Semikolenova, V.N. Zudin, V.N. Panchenko, V.A.
Zakharov, Macromol. Chem. Phys. 202 (2001) 2046–2051.
[41] J. Martinez, V. Cruz, J. Ramos, S. Gutierrez-Oliva, J. Martinez-Salazar, A. Toro-
Labbe, J. Phys. Chem. C 112 (2008) 5023–5028.
Acknowledgements
[42] V. Cruz, J. Ramos, J. Martinez-Salazar, S. Gutierrez-Oliva, A. Toro-Labbe,
Organometallics 28 (2009) 5889–5895.
[43] R. Raucoules, T. de Bruin, P. Raybaud, C. Adamo, Organometallics 27 (2008)
3368–3377.
[44] I.E. Soshnikov, N.V. Semikolenova, A.N. Bushmelev, K.P. Bryliakov, O.Y. Lyakin,
C. Redshaw, V.A. Zakharov, E. Talsi, Organometallics 28 (2009) 6003–6013.
[45] B. Peifer, W. Milius, H.G. Alt, J. Organomet. Chem. 553 (1998) 205–220.
[46] J. Ramos, V. Cruz, A. Munoz-Escalona, J. Martinez-Salazar, Polymer 43 (2002)
3635–3645.
[47] N.I. Ivancheva, V.K. Badaev, I.I. Oleinik, S.S. Ivanchev, G.A. Tolstikov, Doklady
Phys. Chem. 374 (2000) 203–205.
[48] R. Souane, F. Isel, F. Peruch, P.J. Lutz, C. R. Chim. 5 (2002) 43–48.
[49] R. Schmidt, M.B. Welch, S.J. Palackal, H.G. Alt, J. Mol. Catal. A: Chem. 179 (2002)
155–173.
We thank Saudi Basic Industries Corporation (SABIC), Saudi Ara-
bia, for the financial support and Susanne Edinger (MC II, University
of Bayreuth) and Ruth Lohwasser (MC I, University of Bayreuth) for
recording the MALDI-TOF spectra.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[50] C. Qian, F. Gao, Y. Chen, L. Gao, Synlett (2003) 1419–1422.
[51] G.-X. Jin, C. Liu, CN 1352204 (2002).
[52] C. Liu, G. Zhou, G.X. Jin, CN 1306012 (2001).
References
[53] R.F. Moreira, E.Y. Tshuva, S.J. Lippard, Inorg. Chem. 43 (2004) 4427–4434.
[54] R. Li, R.L. Smith, H.I. Kenttamaa, J. Am. Chem. Soc. 116 (1996) 5056–5061.
[55] V. Malatesta, K.U. Ingold, J. Am. Chem. Soc. 103 (1981) 609–614.
[56] G.J.P. Britovsek, S. Mastroianni, G.A. Solan, S.P.D. Baugh, C. Redshaw, V.C. Gibson,
A.J.P. White, D.J. Williams, M.R.J. Elsegood, Chem. Eur. J. (2000) 2221–2231.
[57] J.-Y. Liu, Y. Zheng, N. Hu, Y.-S. Li, Chin. J. Chem. 24 (2006) 1447–1451.
[58] M. Watanabe, H. Sato, M. Kuramoto, H. Tashiro, S. Tanaka, T. Tamura, WO
2001017967 (2001).
[1] G.J.P. Britovsek, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S.J. McTavish, G.A.
Solan, A.J.P. White, D.J. Williams, Chem. Commun. (1998) 849–850.
[2] G.J.P. Britovsek, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S.J. McTavish, G.A.
Solan, A.J.P. White, D.J. Williams, J. Am. Chem. Soc. 121 (1999) 8728–8740.
[3] G.J.P. Britovsek, V.C. Gibson, D.F. Wass, Angew. Chem. Int. Ed. 38 (1999)
428–447.
[4] G.J.P. Britovsek, G.K.B. Clentsmith, V.C. Gibson, D.M.L. Goodgame, S.J. McTavish,
Q.A. Pankhurst, Catal. Commun. 3 (2002) 207–211.
[5] B.L. Small, M. Brookhart, J. Am. Chem. Soc. 120 (1998) 7143–7144.
[6] B.L. Small, M. Brookhart, A.M.A. Bennett, J. Am. Chem. Soc. 120 (1998)
4049–4050.
[7] B.L. Small, M. Brookhart, Macromolecules 12 (1999) 2120–2130.
[8] Y. Chen, C. Qian, J. Sun, Organometallics 22 (2003) 1231–1236.
[9] Y. Chen, R. Chen, C. Qian, X. Dong, J. Sun, Organometallics 22 (2003) 4312–4321.
[10] Z. Zhang, S. Chen, X. Zhang, H. Li, Y. Ke, Y. Lu, Y. Hu, J. Mol. Catal. A: Chem. 230
(2005) 1–8.
[11] F. Pelascini, F. Peruch, P.J. Lutz, M. Wesolek, J. Kress, Eur. Polym. Sci. 41 (2005)
1288–1295.
[12] K. Lappalainen, K. Yliheikkilä, A.S. Abu-Surrah, M. Polamo, M. Leskelä, T. Repo,
Z. Anorg. Allg. Chem. 631 (2005) 763–768.
[59] T. Zhang, W.H. Sun, T. Li, X.J. Yang, J. Mol. Catal A: Chem. 218 (2004) 119–124.
[60] G.V. Schulz, Z. Phys. Chem. B 30 (1935) 379–398.
[61] G.V. Schulz, Z. Phys. Chem. B 43 (1939) 25–46.
[62] P.J. Flory, J. Am. Chem. Soc. 62 (1940) 1561–1565.
[63] H. Kehlen, M.T. Rätzsch, Z. Phys. Chem. 265 (1984) 1049–1060.
[64] M. Seitz, Diploma thesis, University of Bayreuth, Germany (2001).
[65] S.A. Svejda, M. Brookhart, Organometallics 18 (1999) 65–74.
[66] S. Peitz, N. Peulecke, B.R. Aluri, S. Hansen, B.H. Mueller, A. Spannenberg, U.
Rosenthal, M.H. Al-Hazmi, F.M. Mosa, A. Woehl, W. Mueller, Eur. J. Inorg. Chem.
(2010) 1167–1171.
[67] M. Seitz, C. Goerl, W. Milius, H.G. Alt, Jordan J. Chem. 3 (2008) 109–145.
[68] B.L. Small, A.J. Marcucci, Organometallics 20 (2001) 5738–5744.
[69] C.M. Killian, L.K. Johnson, M. Brookhart, Organometallics 16 (1997)
2005–2007.
[13] A.S. Ionkin, W.J. Marshall, D.J. Adelman, A.L. Shoe, R.E. Spence, T. Xie, J. Polym.
Sci. A: Polym. Chem. 44 (2006) 2615–2635.