C O M M U N I C A T I O N S
Scheme 2
importantly, the olefin aziridination of both stereoisomers was found
to be highly stereospecific, which is a relatively rare example of
stereochemical retention in the aziridinations19 and strongly suggests
a concerted reaction mechanism.
Rates for aziridination of cis-cyclooctene with imino-λ3-bromane
1 were measured spectrophotometrically at 50 °C in acetonitrile
solution. The observed rate constants kobsd are proportional to
concentration of the olefin and afforded k2 value of 1.14 × 10-1
M-1 s-1 (Table S3). These results most likely suggest the involve-
ment of a bimolecular transition state such as 3 (Scheme 2), in
which an olefin attacks the σ* N-Br orbital (LUMO) of 1 in the
nitrenoid transfer process.
Figure 1. ORTEP drawing of the dimeric unit of 1 with thermal ellipsoids
at 50% probability. Selected bond lengths (Å) and angles (deg): Br1-N1
1.846(2), Br1-C1 1.931(2), C1-Br1-N1 100.94(11).
Table 1. Aziridination of Olefins with Imino-λ3-bromane 1a
entry
olefin
solvent
time (h) yield (%)b
Z:E
Supporting Information Available: Experimental details, Figures
S1 and S2, Tables S1-S3, complete ref 14, and X-ray crystallographic
data in CIF format for 1. This material is available free of charge via
1
2
3
4
5
6
7
8
9
cyclohexene
cyclohexene
MeCN
CH2Cl2
MeCN
MeCN
MeCN
MeCN
CH2Cl2
MeCN
MeCN
MeCN
MeCN
CH2Cl2
MeCN
MeCN
CH2Cl2
CH2Cl2
5
5
3
2
5
2a
2a
2b
2c
2d
2e
2f
2g
2g
2h
2h
2h
2i
67 (75)
76 (85)
97
90
72 (78)
80
cycloheptene
cis-cyclooctene
norbornene
Me2CdCMe2
n-C8H17CHdCH2
Z-PhCHdCHPh
E-PhCHdCHPh
9
References
18
12
48
3
24
8
1
36
6
65 (68)
81
(1) (a) Abramovitch, R. A.; Bailey, T. D.; Takaya, T.; Uma, V. J. Org. Chem.
1974, 39, 340. (b) Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett.
1975, 361. (c) Yagupolskii, L. M.; Popov, V. I.; Pavlenko, N. V.; Maletina,
I. I.; Mironova, A. A.; Gavrilova, R. Yu.; Orda, V. V. J. Org. Chem.
USSR 1986, 22, 1947.
(2) Reviews: (a) Dauban, P.; Dodd, R. H. Synlett 2003, 1571. (b) Muller, P.;
Fruit, C. Chem. ReV. 2003, 103, 2905. (c) Zhdankin, V. V.; Stang, P. J.
Chem. ReV. 2002, 102, 2523. (d) Varvoglis, A. The Organic Chemistry
of Polycoordinated Iodine; VCH: New York, 1992. (e) HyperValent Iodine
Chemistry; Wirth, T., Ed.; Springer: Berlin, 2003.
(3) (a) Ochiai, M. In Chemistry of HyperValent Compounds; Akiba, K.-y.,
Ed.; Wiley-VCH: New York, 1999; Chapter 12. (b) Okuyama, T.; Takino,
T.; Sueda, T.; Ochiai, M. J. Am. Chem. Soc. 1995, 117, 3360.
(4) (a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994,
116, 2742. (b) Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc.
1995, 117, 5889.
>99:1
0c
10 Z-PhCHdCHMe
11 E-PhCHdCHMe
12 E-PhCHdCHMe
13 Z-PrCHdCHPr
14 E-PrCHdCHPr
15 E-PrCHdCHPr
16 PhCHdCH2
82 (97) >99:1
(15) 7:93
79 (84) <1:99
89 (98) >99:1
(23)
2i
2i
2j
2l
5:95
53 (88) <1:99
12
36
84 (91)
17 p-ClC6H4CHdCH2 CH2Cl2
92 (95)d
a Conditions: 1:1.2 olefin/bromane 1, acetonitrile, room temperature, Ar.
b Isolated yields. Numbers in parentheses are 1H NMR yields. c trans-
Stilbene (85%) was recovered. d Reaction was carried out at 0 °C.
(5) (a) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.; Che, C.-M. J. Am.
Chem. Soc. 1999, 121, 9120. (b) Espino, C. G.; Wehn, P. M.; Chow, J.;
Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935. (c) Dauban, P.; Saniere,
L.; Tarrade, A.; Dodd, R. H. J. Am. Chem. Soc. 2001, 123, 7707. (d)
Fructos, M. R.; Trofimenko, S.; Diaz-Requejo, M. M.; Perez, P. J. J. Am.
Chem. Soc. 2006, 128, 11784. (e) Richardson, R. D.; Desaize, M.; Wirth,
T. Chem.sEur. J. 2007, 13, 6745.
temperature, yielding sulfonylaziridines. Preliminary results are
shown in Table 1. Compared to the aziridination reaction with
sulfonylimino-λ3-iodanes, in which a transition-metal catalyst such
as Cu or Rh(II) salt is indispensable to generate reactive metal imido
species,2,5 our imido transfer reaction does not require any metal
additives. Furthermore, the aziridination proceeds using limiting
amounts of starting olefins, in contrast to most of the reported
reactions with preformed imino-λ3-iodanes, which rely on excess
amounts of substrate (3 or more equiv) to effect high product
conversion.18 Thus, exposure of cyclohexene to imino-λ3-bromane
1 (1.2 equiv) in acetonitrile at room temperature for 5 h afforded
N-triflylaziridine 2a selectively in 67% yield, with no evidence for
formation of an allylic amidation side product (entry 1). A wide
array of cyclic and acyclic alkenes gave the corresponding aziridines
in high yields. Among the challenging substrates, a terminal olefin
1-decene was found to afford a good yield of aziridine.
(6) Ochiai, M.; Nishi, Y.; Goto, S.; Shiro, M.; Frohn, H. J. J. Am. Chem.
Soc. 2003, 125, 15304.
(7) (a) Mishra, A. K.; Olmstead, M. M.; Ellison, J. J.; Power, P. P. Inorg.
Chem. 1995, 34, 3210. (b) Boucher, M.; Macikenas, D.; Ren, T.;
Protasiewicz, J. D. J. Am. Chem. Soc. 1997, 119, 9366.
(8) For soluble imino-λ3-iodanes, see: Macikenas, D.; Skrzypczak-Jankun,
E.; Protasiewicz, J. D. J. Am. Chem. Soc. 1999, 121, 7164.
(9) Hansch, C.; Leo, A.; Taft, R. W. Chem. ReV. 1991, 91, 165.
(10) Crystallographic data for iminobromane 1: C8H4BrF6NO2S, M ) 372.08,
T ) 93 K, monoclinic space group P21/c (No. 14), a ) 13.0591(2) Å, b
) 9.8448(2) Å, c ) 8.9487(2) Å, â ) 93.0748(7)°, V ) 1148.83(4) Å3,
Z ) 4, Dc ) 2.151 g cm-3, µ (Cu KR) ) 74.063 cm-1; 18535 reflections
were collected; 2099 were unique; R ) 0.0315, Rw ) 0.0734.
(11) (a) Pauling, L. The Nature of the Chemical Bond; Cornell University:
Ithaca, 1960. (b) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.;
Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1978, S1.
Our uncatalyzed aziridination appears to be quite sensitive to
the geometry of olefins: aziridination of cis-1,2-disubstituted olefins
occurs smoothly, and the isolated aziridines 2g-i were found to
be diastereomerically pure, with complete preservation of the
original cis stereochemistry of the olefins. On the other hand, the
aziridinations of trans isomers in acetonitrile were very sluggish.
Finally, we found that use of dichloromethane as a solvent
dramatically increases the rate and efficiency of the uncatalyzed
reaction (compare entries 10-12 and 13-15). Acetonitrile probably
coordinates to the positively charged bromine atom of imino-λ3-
bromane 1 and stabilizes it, which, in turn, will decrease the
reactivity of 1. Such an adduct is predicted to be more stabilized
than the components by 7.8 kcal mol-1 (Figure S2). Most
(12) (a) Jabay, O.; Pritzkow, H.; Jander, J. Z. Naturforsch. 1977, 32b, 1416.
(b) Yathirajan, H. S.; Rangappa, K. S.; Nagendra, P.; Mohana, K. N. Asian
J. Chem. 2001, 13, 35.
(13) Kirmse, W. Eur. J. Org. Chem. 2005, 237.
(14) Frisch, M. J.; et al. Gaussian 03, revision D.02; Gaussian, Inc.:
Wallingford, CT, 2004.
(15) For an I-N single-bond character in imino-λ3-iodanes ArINTs, see ref 7.
(16) Noronha, L. A.; Judson, T. J. L.; Dias, J. F.; Santos, L. S.; Eberlin, M.
N.; Mota, C. J. A. J. Org. Chem. 2006, 71, 2625.
(17) Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-
VCH: Weinheim, Germany, 2006.
(18) On the other hand, olefins are used as limiting component in the metal-
catalyzed aziridinations that involve the in situ generation of iminoiodanes.
See ref 5.
(19) Halfen, J. A. Curr. Org. Chem. 2005, 9, 657.
JA075811I
9
J. AM. CHEM. SOC. VOL. 129, NO. 43, 2007 12939