H. N. Nguyen, Z. J. Wang / Tetrahedron Letters 48 (2007) 7460–7463
7463
V. J.; Chaffee, S. C.; Coxon, A.; Emery, M.; Fretland, J.;
Gallant, P.; Gu, Y.; Hoffman, D.; Johnson, R. E.;
Kendall, R.; Kim, J. L.; Long, A. M.; Morrison, M.;
Olivieri, P. R.; Patel, V. F.; Polverino, A.; Rose, P.;
Tempest, P.; Wang, L.; Whittington, D. A.; Zhao, H. J.
Med. Chem. 2007, 50, 611; (b) Cee, V. J.; Albrecht, B. K.;
Geuns-Meyer, S.; Hughes, P.; Bellon, S.; Bready, J.;
Caenepeel, S.; Chaffee, S. C.; Coxon, A.; Emery, M.;
Fretland, J.; Gallant, P.; Gu, Y.; Hodous, B. L.; Hoffman,
D.; Johnson, R. E.; Kendall, R.; Kim, J. L.; Long, A. M.;
McGowan, D.; Morrison, M.; Olivieri, P. R.; Patel, V. F.;
Polverino, A.; Powers, D.; Rose, P.; Wang, L.; Zhao, H. J.
Med. Chem. 2007, 50, 627.
iodotetrahydronapthyridine (19) also underwent a vari-
ety of coupling processes such as cyanation (19–29),
Stille (19–30), and Buchwald–Hartwig (19–31, 32, 33,
and 34) couplings,10 and C–O bond formation (19–35).11
In conclusion, we have demonstrated a novel approach
to synthesize functionalized hinge binding cores such
as iodotetrahydronaphthyridine, iodoazaindoline, and
iodotetrahydropyridoazepine ring-systems. The key step
involved a halogen dance that provided the penultimate
precursors to those rings. In addition, we have shown
that the iodo-functional group could be transformed
via a variety of metal-catalyzed coupling reactions.
These rings have the potential to provide entry to new
classes of kinase inhibitors.
3. (a) Kuwano, R.; Kaneda, K.; Ito, T.; Sato, K.; Kurokawa,
T.; Ito, Y. Org. Lett. 2004, 6, 2213; (b) Kuwano, R.; Sato,
K.; Ito, Y. Chem. Lett. 2000, 428; (c) Kuwano, R.; Sato,
K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc.
2000, 122, 7614.
4. (a) Maryanoff, B. E.; McComsey, D. F. J. Org. Chem.
1978, 43, 2733; (b) Warpehoski, M. A.; Bradford, V. S.
Tetrahedron Lett. 1986, 27, 2735.
Acknowledgments
Z.W. thanks Amgen Inc. for a summer internship. We
would like to thank Dr. Steve Hollis for performing
some of the NMR analyses and Professor Eric Jacobsen
for insightful suggestions.
5. Bishop, B. C.; Brands, K. M. J.; Cottrell, I. F.; Cowden,
C. J.; Davies, A. J.; Keen, S. P.; Liberman, D. R.; Stewart,
G. W. WO 2004/078109 A2, 2004.
6. Rocca, P.; Cochennec, C.; Marsais, F.; Thomas-dit-
Dumont, L.; Mallet, M.; Godard, A.; Guequiner, G. J.
Org. Chem. 1993, 58, 7832.
7. (a) Williams, A. J.; Chakthong, S.; Gray, D.; Lawrence, R.
M.; Gallagher, T. Org. Lett. 2003, 5, 811; (b) Fleming, J.
J.; Du Bois, J. J. Am. Chem. Soc. 2006, 128, 3926; (c)
Posakony, J. J.; Grierson, J. R.; Tewson, T. J. J. Org.
Chem. 2002, 67, 5164; (d) Tewson, T. J. Synthesis 2002,
859.
Supplementary data
Supplementary data associated with this article can be
8. Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
6043.
9. Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000,
122, 4020.
References and notes
10. Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 1997, 62, 6066.
11. Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L.
Org. Lett. 2002, 4, 973.
1. Liao, J. J.-L. J. Med. Chem. 2007, 50, 409.
2. (a) Hodous, B. L.; Geuns-Meyer, S. D.; Hughes, P. E.;
Albrecht, B. K.; Bellon, S.; Bready, J.; Caenepeel, S.; Cee,