We have successfully demonstrated the introduction of Vaska’s
complex as a reducing agent for silver salts to yield two new high-
nuclearity osmium–silver clusters and suggested the probable
mechanism that was involved in the reaction.
We gratefully acknowledge the financial support of the Hong
Kong Research Grants Council and The University of Hong
Kong. Y.-B. Lee acknowledges the receipt of a Postgraduate
Studentship from The University of Hong Kong.
Notes and references
{ Spectroscopic data: 1: IR [n(CO), CH2Cl2] 2112 m, 2072 m, 2036 s,
2000 m. m/z: 4790 (calc. 4790, M+). 1H NMR (CD2Cl2): d 7.4–7.8 (m, 30H,
PPN).
2: IR [n(CO), CH2Cl2] 2070 m, 2038 s, 2019 m, 1985 m. m/z: 3558 (calc.
3557, M+). 1H NMR (CD2Cl2): d 7.4–7.8 (m, 30H, PPN).
3: IR [n(CO), CH2Cl2] 2052 m [n(O–O), CH2Cl2] 860 s. m/z: 812 (calc.
812, M+). 1H NMR (CD2Cl2): d 7.2–7.4 (m, 30H, PPh3).
§ Crystallographic data: Refinements of all structures were based on full-
matrix least refinement on F. Detailed experimental procedures can be
found in the supporting information{.
Fig. 4 Schematic diagram showing the proposed mechanism.
photosensitive and will readily release oxygen even in the solid
˚
state. The reported bond length is 1.30 A, which suggests a typical
superoxide ion (O22) addition. For complex 3, however, the bond
CCDC 644530–644532. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b709860j
˚
length observed is 1.475(6) A, which suggests a peroxide ion
(O222), and the addition is totally irreversible. The iodo analog of
3, [IrI(CO)(PPh3)2(O2)],7 which also possesses an irreversible
1 B. C. Gates, Chem. Rev., 1995, 95, 511; N. Toshima and T. Yonezawa,
New J. Chem., 1998, 22, 1179; A. K. Smith and J. M. Basset, J. Mol.
Catal., 1977, 2, 229; G. L. Geoffroy and W. L. Gladfelter, J. Am. Chem.
Soc., 1977, 99, 6775; P. J. Dyson, Coord. Chem. Rev., 2004, 248, 2458.
2 A. Siani, B. Captain, O. S. Alexeev, E. Stafyla, A. B. Hungria,
P. A. Midgley, J. M. Thomas, R. D. Adams and M. D. Amiridis,
Langmuir, 2006, 22, 5160; M. W. DeGroot, H. Rosner and
J. F. Corrigan, Chem.–Eur. J., 2006, 12, 1547; P. Jena, S. N. Khanna
and B. K. Pao, Clusters and Nano-assembles, Physical and Biological
systems, Richmond, Virginia, USA, 2003.
3 B. F. G. Johnson, J. Lewis and M. Monari, J. Chem. Soc., Dalton
Trans., 1990, 3525; B. F. G. Johnson, R. Khattar, J. Lewis and
P. R. Raithby, J. Chem. Soc., Dalton Trans., 1989, 1421; S. R. Drake,
B. F. G. Johnson and J. Lewis, J. Chem. Soc., Dalton Trans., 1989, 505;
S. R. Drake, B. F. G. Johnson and J. Lewis, J. Organomet. Chem., 1988,
340, C31; S. B. Colbran, C. M. Hay, B. F. G. Johnson, F. J. Lahoz,
J. Lewis and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1986, 1766;
M. I. Bruce, E. Horn, J. G. Matisons and M. R. Snow, J. Organomet.
Chem., 1985, 286, 271; J. A. Ladd, H. Hope and A. L. Balch,
Organometallics, 1984, 3, 1838.
4 M. Fajardo, M. P. Gomez-Sal, H. D. Holden, B. F. G. Johnson,
J. Lewis, R. C. S. McQueen and P. R. Raithby, J. Organomet. Chem.,
1984, 267, C25.
5 J. Zhang and L. F. Dahl, J. Chem. Soc., Dalton Trans., 2002, 1269;
V. G. Albano, L. Grossi, G. Longoni, M. Monari, S. Mulley and
A. Sironi, J. Am. Chem. Soc., 1992, 114, 5708; B. K. Teo, H. Zhang and
X. Shi, Inorg. Chem., 1994, 33, 4086; B. K. Teo and H. Zhang, J. Cluster
Sci., 2001, 12, 349; B. K. Teo, H. Dang, C. F. Campana and H. Zhang,
Polyhedron, 1998, 17, 617.
6 J. Sinzig, L. L. de Jongh, A. Ceriotti, R. della Pergola, G. Longoni,
M. Stener, K. Albert and N. Rosch, Phys. Rev. Lett., 1998, 81, 3211.
7 J. A. McGinnety, R. J. Doedens and J. A. Ibers, Science, 1967, 155, 709;
L. Vaska, L. S. Chen and C. V. Senoff, Science, 1971, 174, 587;
L. Vaska, Science, 1963, 140, 809; S. J. La Placa and J. A. Ibers, J. Am.
Chem. Soc., 1965, 87, 2581; J. A. McGinnety, R. J. Doedeats and
J. A. Ibers, Inorg. Chem., 1967, 6, 2243.
8 S. Y. W. Hung and W. T. Wong, Chem. Commun., 1997, 2099.
9 J. Donohue, The Structure of Elements, J. Wiley & Sons, NY, 1974, 209.
10 K. F. Yung and W. T. Wong, Angew. Chem., Int. Ed., 2003, 42, 553;
O. A. Belyakova and Yu. L. Slovokhotov, Russ. Chem. Bull., 2003, 52,
2299.
11 J. S. Y. Wong andW. T. Wong, Organometallics, 2003, 22,4798;K.S.Y.
Leung and W. T. Wong, J. Chem. Soc., Dalton Trans., 1997, 4357.
12 D. J. Liston, C. A. Reed, C. W. Eigenbrot and W. R. Scheidt, Inorg.
Chem., 1987, 26, 2739; J. Peone, Jr. and L. Vaska, Angew. Chem., Int.
Ed. Engl., 1971, 10, 511.
˚
oxygen addition, has been isolated with a bond length of 1.50 A
for the bound O2.7
However, reactions between Vaska’s complex and other silver
salts such as [AgBF4], [AgNO3] and [Ag2O] have ended up with
halide-replaced cationic iridium species,12 and no silver clusters or
mixed-metal clusters of osmium–silver can be isolated. Replacing
the reaction medium with chlorinated solvents such as CH2Cl2,
CHCl3 or methanol also leads to some triosmium clusters instead
of the formation of high-nuclearity osmium–silver mixed-metal
clusters. Although the mechanistic detail of these cluster buildup
reactions is usually difficult to delineate, a few key steps that are
involved can be put forward. It is likely that [AgPF6] oxidized
Vaska’s complex to give a IrII species in THF. The successive
hydrolysis of this IrII intermediate through the trace amount of
water that was present led to the iridium dioxygen species 3. A
schematic drawing of this suggested mechanism is shown in Fig. 4.
An increase in C–O stretching frequency in the IR spectrum was
observed when [AgPF6] was mixed with Vaska’s complex (from
1967 cm21 to 2052 cm21). In contrast, the halide abstraction
reaction with other silver salts (AgBF4, AgNO3) on Vaska’s
complex gave only a slight increase in the C–O stretching
frequencies (from 1967 cm21 to 1989 cm21). The role of Vaska’s
complex–H2O as a reducing agent is crucial for the formation of
the [Ag9]n+ core. Replacing Vaska’s complex with its reversible
oxygen adduct, [Ir(PPh3)2(CO)Cl(O2)], or the irreversible iodo
oxygen adduct, [Ir(PPh3)2(CO)I(O2)], did not lead to any osmium–
silver mixed-metal clusters. The formation of 3 from hydrolysis is
evident in 18O-labelling studies. A 250 mL sample of 18O-enriched
water was introduced in a pre-dried THF solvent for the
preparation. Infrared spectroscopic study shows that 3 displayed
three absorption bands at 856, 833 and 808 cm21 that correspond
to the 16O–16O, 16O–18O and 18O–18O stretching vibrations,
respectively. The results are in good agreement with reports and
calculations13 in the literature and, therefore, confirm that the
oxygen atom in water was oxidized and bound to the iridium
centre to give complex 3.
13 K. Takao, Y. Fujiwara, T. Imanaka, M. Yamamoto, K. Hirota and
S. Teranishi, Bull. Chem. Soc. Jpn., 1970, 43, 2249.
3926 | Chem. Commun., 2007, 3924–3926
This journal is ß The Royal Society of Chemistry 2007