A R T I C L E S
Scheme 1
Lebel et al.
opportunities to develop new efficient one-pot multicatalytic
processes are rich. In this paper, we report the use of copper-
catalyzed methylenation reactions in one-pot procedures to
access disubstituted alkenes via a palladium-catalyzed Heck
reaction and alkanes using a hydroboration-palladium-catalyzed
Suzuki reaction.
Results and Discussion
One-Pot Methylenation-Heck Cross-Coupling Reac-
tions: Access to (E)-Stilbenoid Derivatives. A number of
stilbenes have been isolated from natural sources. Among them,
hydroxylated (E)-stilbenoids,11 such as resveratrol (3,4,5-
trihydroxystilbene, a phytoalexin found in grapes and other food
products), have attracted considerable attention because of their
potential therapeutic value as chemopreventive and chemo-
therapeutic agents.12,13 Various synthetic routes have been
developed, including a number based on Heck technologies.14
Recently, cross-metathesis reactions have also been successfully
used to prepare hydroxylated (E)-stilbenoids.15 However, in all
cases, it is required to have a styrene derivative as the substrate.
Although some are commercially available, most styrenes need
to be prepared from the corresponding benzaldehyde or benzylic
alcohol. Using a multicatalytic strategy combining a methyl-
enation reaction with a coupling reaction avoids the need for
isolating the styrene intermediate (which can potentially poly-
merize), thereby decreasing the amount of required reagents and
solvents (for workup and purification procedures), while
producing less waste. At the outset, we envisioned developing
a rhodium-catalyzed methylenation-ruthenium-catalyzed cross-
metathesis to address this issue. However, our preliminary results
with this multicatalytic process showed limitations, as 5 equiv
of the alkene moiety was required (eq 1).16
Scheme 2
also reported multicatalytic processes for the synthesis of
alkenes, using an oxidation-methylenation procedure and a
methylenation-metathesis procedure with the sequential addi-
tion of various palladium, rhodium, and ruthenium complexes
(Scheme 1).7 Furthermore, we have shown that we could take
advantage of the dual activity of Wilkinson’s catalyst with both
carbonyl derivatives and alkene derivatives. Indeed, one-pot
procedures involving rhodium-catalyzed methylenation-hy-
droboration reactions8 and rhodium-catalyzed methylenation-
hydrogenation9 reactions have been described (Scheme 2).
The one-pot processes that we have reported thus far are based
on the rhodium-catalyzed methylenation reaction. Given the
recently developed copper-catalyzed methylenation reaction,6h
and the known ability of copper complexes to serve as
cocatalysts in palladium-catalyzed cross-coupling reactions,10
To overcome these problems, we changed the strategy to
explore the combination of the rhodium- or copper-catalyzed
methylenation reaction with a palladium-catalyzed Heck cross-
coupling reaction. The challenge was to find cross-coupling
(6) (a) Lebel, H.; Paquet, V.; Proulx, C. Angew. Chem., Int. Ed. 2001, 40,
2887-2890. (b) Grasa, G. A.; Moore, Z.; Martin, K. L.; Stevens, E. D.;
Nolan, S. P.; Paquet, V.; Lebel, H. J. Organomet. Chem. 2002, 658, 126-
131. (c) Lebel, H.; Paquet, V. Org. Lett. 2002, 4, 1671-1674. (d) Lebel,
H.; Guay, D.; Paquet, V.; Huard, K. Org. Lett. 2004, 6, 3047-3050. (e)
Lebel, H.; Paquet, V. Organometallics 2004, 23, 1187-1190. (f) Lebel,
H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 320-328. (g) Paquet, V.;
Lebel, H. Synthesis 2005, 1901-1905. (h) Lebel, H.; Davi, M.; Diez-
Gonzalez, S.; Nolan, S. P. J. Org. Chem. 2007, 72, 144-149.
(11) (a) Orsini, F.; Pelizzoni, F.; Verotta, L.; Aburjai, T.; Rogers, C. B. J. Nat.
Prod. 1997, 60, 1082-1087. (b) Adesanya, S. A.; Nia, R.; Martin, M.-T.;
Boukamcha, N.; Montagnac, A.; Paies, M. J. Nat. Prod. 1999, 62, 1694-
1695. (c) Wang, M.; Jin, Y.; Ho, C.-T. J. Agric. Food Chem. 1999, 47,
3974-3977. (d) Fremont, L. Life Sci. 2000, 66, 663-673. (e) De Ledinghen,
V.; Monvoisin, A.; Neaud, V.; Krisa, S.; Payrastre, B.; Bedin, C.;
Desmouliere, A.; Bioulac-Sage, P.; Rosenbaum, J. Int. J. Oncol. 2001, 19,
83-88. (f) Eddarir, S.; Abdelhadi, Z.; Rolando, C. Tetrahedron Lett. 2001,
42, 9127-9130. (g) Burns, J.; Yokota, T.; Ashihara, H.; Lean, M. E. J.;
Crozier, A. J. Agric. Food Chem. 2002, 50, 3337-3340.
(7) Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 11152-11153.
(8) Lebel, H.; Ladjel, C. J. Organomet. Chem. 2005, 690, 5198-5205.
(9) Lebel, H.; Ladjel, C. J. Org. Chem. 2005, 70, 10159-10161.
(10) See for instance: (a) Zhang, Z. H.; Liebeskind, L. S. Org. Lett. 2006, 8,
4331-4333. (b) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Chem.sEur. J.
2005, 11, 3294-3308. (c) Denmark, S. E.; Baird, J. D. Org. Lett. 2004, 6,
3649-3652. (d) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Angew. Chem., Int.
Ed. 2004, 43, 1132-1136. (e) Ghosh, S. K.; Singh, R.; Singh, G. C. Eur.
J. Org. Chem. 2004, 4141-4147. (f) Yu, Y.; Liebeskind, L. S. J. Org.
Chem. 2004, 69, 3554-3557. (g) Thathagar, M. B.; Beckers, J.; Rothenberg,
G. AdV. Synth. Catal. 2003, 345, 979-985. (h) Casado, A. L.; Espinet, P.
Organometallics 2003, 22, 1305-1309. (i) Liu, X. X.; Deng, M. Z. Chem.
Commun. 2002, 622-623. (j) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org.
Lett. 2002, 4, 4309-4312. (k) Thathagar, M. B.; Beckers, J.; Rothenberg,
G. J. Am. Chem. Soc. 2002, 124, 11858-11859. (l) Alphonse, F. A.;
Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G. Synlett 2002, 447-
450. (m) Savarin, C.; Liebeskind, L. S. Org. Lett. 2001, 3, 2149-2152.
(n) Hanamoto, T.; Kobayashi, T.; Kondo, M. Synlett 2001, 281-283. (o)
Han, X. J.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 7600-
7605. (p) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C. J.; Liebeskind,
L. S. J. Org. Chem. 1994, 59, 5905-5911. See also: (q) Beletskaya, I. P.;
Cheprakov, A. V. Coord. Chem. ReV. 2004, 248, 2337-2364.
(12) (a) Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.;
Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta,
R. G.; Moon, R. C.; Pezzuto, J. M. Science 1997, 275, 218-20. (b)
Savouret, J. F.; Quesne, M. Biomed. Pharmacother. 2002, 56, 84-87. (c)
Delmas, D.; Lancon, A.; Colin, D.; Jannin, B.; Latruffe, N. Curr. Drug
Targets 2006, 7, 423-442.
(13) (a) Pace-Asciak, C. R.; Hahn, S.; Diamandis, E. P.; Soleas, G.; Goldberg,
D. M. Clin. Chim. Acta 1995, 235, 207-19. (b) Goldberg, D. M.; Yan, J.;
Ng, E.; Diamandis, E. P.; Karumanchiri, A.; Soleas, G.; Waterhouse, A.
L. Am. J. Enol. Vitic. 1995, 46, 159-65.
(14) (a) Ferre-Filmon, K.; Delaude, L.; Demonceau, A.; Noels, A. F. Coord.
Chem. ReV. 2004, 248, 2323-2336. (b) Botella, L.; Najera, C. Tetrahedron
Lett. 2004, 45, 1833-1836 and references therein.
(15) (a) Ferre-Filmon, K.; Delaude, L.; Demonceau, A.; Noels, A. F. Eur. J.
Org. Chem. 2005, 3319-3325. (b) Velder, J.; Ritter, S.; Lex, J.; Schmalz,
H. G. Synthesis 2006, 273-278.
(16) Lebel, H.; Paquet, V. Unpublished results. Furthermore, the reaction was
limited to acrylate derivatives.
9
13322 J. AM. CHEM. SOC. VOL. 129, NO. 43, 2007