Stimulated by the potential applications in sensors, molecular
electronics, and catalysts, great efforts have been paid to this
kind of new material. In hydrogen bond-mediated self-
assembly systems, little attention has been paid to the
hydrazide derivatives,7 considering their high density of
hydrogen-bonding sites (two acceptor sites and two donor
sites) and convenient fixation of conformation.
As stated above, most heterocycle-based quadruple hy-
drogen-bonded systems came from urea derivatives. Con-
tinuing our current interest in the hydrazide motif as an
excellent building block in self-assembly,8 we herein report
a new quadruple hydrogen-bonded motif based on hy-
drazide-quinolinone derivative. Its acyclic analogue oxalic
monoester-monoamide derivative gelates organic liquid to
form organogel. To increase the strength, in the design of
the target molecule 5 the following factors have been
considered (Scheme 1): (i) the rigid quinolinone framework
quadruple hydrogen-bonded homodimer; (ii) the aromatic
ring as a spacer reduces 2-fold repulsive electrostatic
interactions;10 (iii) the reservation of R-carbonyl vinyl motif
renders good proton donability of the NH group and
consequent high stability of the resulting homodimer. In the
case of its acyclic analogue 6, the self-assembly process may
be complicated by large conformational mobility.
2-(Octyloxy)-5-nitrobenzoic acid (1)11 was first converted
into its acyl chloride in refluxing thionyl chloride and then
coupled with acetylhydrazide to give compound 2 in
quantitative yield. The nitro functional group was reduced
under the catalytic hydrogenation conditions and then was
reacted with dimethyl acetylenedicarboxylate to give com-
pound 4 or was coupled with methyl oxalyl chloride to give
compound 6. Compound 4 further underwent thermal cy-
cloaddition reaction in reflux diphenyl ether to give com-
pound 5 in satisfying yield. As control, compounds 7,8a 8,12
and 913 were also synthesized (Scheme 2).
Scheme 1. Secondary Electrostatic Interaction Analysis of
Homodimer 5‚5 and Conformational Analysis of Acyclic 6
Scheme 2. Synthetic Route of 5 and 6, Chemical Structures
of Controls 7, 8, and 9
and introduction of an S(6)-type hydrogen-bonded ring9
confine the molecule to be planar and preorganize hydrogen-
bonding sites staying in register for the formation of a
(5) Selected examples: (a) Ducharme, Y.; Wuest, J. D. J. Org. Chem.
1988, 53, 5787-5789. (b) Lafitte, V. G. H.; Aliev, A. E.; Horton, P. N.;
Hursthouse, M. B.; Bala, K.; Golding, P.; Hailes, H. C. J. Am. Chem. Soc.
2006, 128, 6544-6545. (c) Martin, A. M.; Butler, R. S.; Ghiviriga, I.;
Giessert, R. E.; Abboud, K. A.; Castellano, R. K. Chem. Commun. 2006,
4413-4415. (d) Davis, A. P.; Draper, S. M.; Dunne, G.; Ashton, P. Chem.
Commun. 1999, 2265-2266. (e) Prabhakaran, P.; Puranik, V. G.; Sanjayan,
G. J. J. Org. Chem. 2005, 70, 10067-10072. (f) Lu¨ning, U.; Ku¨hl, C.
Tetrahedron Lett. 1998, 39, 5735-5738. (g) Gong, B. Polym. Int. 2007,
56, 436-443 and references therein.
(6) Weiss, R. G., Terech, P., Eds. Molecular Gels. Materials with Self-
Assembled Fibrillar Networks; Springer: Dordrecht, The Netherlands, 2005.
(7) (a) Nowick, J. S. Org. Biomol. Chem. 2006, 4, 3869-3885. (b) Zhao,
X.; Wang, X.-Z.; Jiang, X.-K.; Chen, Y.-Q.; Li, Z.-T.; Chen, G.-J. J. Am.
Chem. Soc. 2003, 125, 15128-15139. (c) Hou, J.-L.; Shao, X.-B.; Chen,
G.-J.; Zhou, Y.-X.; Jiang, X.-K.; Li, Z.-T. J. Am. Chem. Soc. 2004, 126,
12386-12394. (d) Li, C.; Wang, G.-T.; Yi, H.-P.;Jiang, X.-K.; Li, Z.-T.;
Wang, R.-X. Org. Lett. 2007, 9, 1797-1800.
(8) (a) Yang, Y.; Zhang, Y.-Z.; Tang, Y.-L.; Chen, C.-F. New. J. Chem.
2006, 30, 140-142. (b) Yang, Y.; Hu, H.-Y., Chen, C.-F. Tetrahedron Lett.
2007, 48, 3505-3509. (c) Yang, Y.; Yang, Z.-Y; Yi, Y.-P.; Xiang, J.-F.;
Chen, C.-F.; Wan, L.-J.; Shuai, Z.-G. J. Org. Chem. 2007, 72, 4936-4946.
(d) Yang, Y.; Xiang, J.-F.; Chen, C.-F. Org. Lett. 2007, 9, 4355-4357.
(9) (a) Etter, M. C. Acc. Chem. Res. 1990, 23, 120-126. (b) Etter, M.
C.; Macdonald, J. C.; Bernstein, J. Acta Crystallogr., Sect. B. 1990, 46,
256-262. (c) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1555-1573.
1H NMR studies (Figure 1, each 5 mM) in CDCl3 revealed
significant downfield shifts of NH signals of 5 (11.64 ppm
for Hb, 10.45 ppm Ha, and 10.88 ppm for Hc) compared to
those of control compounds 7 (10.91 ppm for Hb, 9.03 ppm
Ha), and 8 (8.99 ppm for Hc), while minor downfield shifts
were observed for compound 6 (11.03 ppm for Hb, 9.42 ppm
for Ha, and 9.53 ppm for Hc) compared to controls 7 and 9
(10) (a) Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112,
2008-2010. (b) Pranata, J.; Wierschke, S. G.; Jorgensen, W. L. J. Am.
Chem. Soc. 1991, 113, 2810-2819. (c) Murray, T. J.; Zimmerman, S. C.
J. Am. Chem. Soc. 1992, 114, 4010-4011.
(11) Zeng, H. Q.; Miller, R. S.; Flowers, R. A.; Gong, B. J. Am. Chem.
Soc. 2000, 122, 2635-2644.
(12) Jaen, J. C.; Laborde, E.; Bucsh, R. A.; Caprathe, B. W.; Sorenson,
R. J.; Fergus, J.; Spiege1, K.; Marks, J.; Dickerson, M. R.; Davis, R. E. J.
Med. Chem. 1995, 38, 4439-4445.
(13) Sellstedt, J. H.; Guinosso, C. J.; Begany, A. J.; Bell, S. C.;
Rosenthale, M. J. Med. Chem. 1975, 18, 926-933.
4992
Org. Lett., Vol. 9, No. 24, 2007