4
naturally occurring core structure, by using diversified ketones
as electrophiles.
not observed
a)
b)
x
Ha
CH3
O
A
Acknowledgments
O
O
OCH3
Ha
O
Hb
Hc
Si CH3
Financial support from Mahidol University, the Thailand
Research Fund through the Royal Golden Jubilee Ph.D. Program
(Grant No. PHD/0115/2557) for P.S. and T.T. and the Center of
Excellence for Innovation in Chemistry (PERCH-CIC) are
gratefully acknowledged.
O
H3C CH3
8a
Hc
7f
Figure 2. Key NOE correlations of compounds a) 8a and b) 7f.
Supplementary data
it was unable to be isolated by this purification method. The
relative stereochemistry of 7f could be assigned by selective
NOE correlations as shown in Figure 2b. Irradiation of the
cyclopropyl proton at 1.69 ppm (Hb) enhanced the other
cyclopropyl protons at 0.50 ppm and 0.85 ppm, as well as the
phenyl protons at 6.80 ppm (Ha) and 7.10 ppm (Hc). However,
irradiation of Ha enhanced Hb, but not Hc. This result suggested
that the cyclopropyl group was located on the same side as the
phenyl ring A.18
Synthetic procedures and supplementary data (1H and 13C
NMR spectra of compounds 7a-l, 8a-k, 9 and 10) associated with
this article can be found, in the online version, at
doi:XXXXXXXXX.
References
1.
2.
Hodgson, D. M.; Gras, E., Synthesis 2002, 12, 1625-1642.
Lertvorachon, J; Thebtaranonth, Y.; Thongpanchang, T.;
Thongyoo, P. J. Org. Chem. 2001, 66,4692-4694.
Unfortunately, the reaction of epoxides 5 and 6 with
fluorenone as an electrophile in the presence of LDA provided
only the reduced product fluorenol 11, without any of the desired
product (Scheme 5).19 To avoid the reduction, lithium 2,2,6,6-
tetramethylpiperidide (LTMP) was applied to generate the
lithiated anion and further reacted with fluorenone to afford the
desired products 7l and 8k. Surprisingly, keto-alcohol 12 was
also observed due to the ortho-lithiation of fluorenone (Scheme
5).20
3.
(a) Capriati, V.; Degennaro, L.; Flavia, R.; Florio, S.; Luisi, R.
Org. Lett. 2002, 4, 1551–1554. (b) Capriati, V.; Degennaro, L.;
Florio, S.; Luisi, R.; Punzi, P. Org. Lett. 2006, 8, 4803–4806. (c)
Florio, S.; Perna, F. M.; Luisi, R.; Barluenga, J.; Fananas, F. J.;
Rodriguez, F. J. Org. Chem. 2004, 69, 9204–9207.
4.
5.
Baramee, A.; Clardy, J.; Kongsaeree, P.; Rajviroongit, S.;
Suteerachanon, C.; Thebtaranonth, Y. Chem. Commun. 1996,
1511–1512.
Chaiyanurakkul, A.; Jitchati, R.; Kaewpet, M.; Rajviroongit, S.;
Thebtaranonth, Y.; Thongyoo, P.; Watcharin, W. Tetrahedron
2003, 59, 9825–9837.
O
O
O
Li
R
O
OMe
LTMP, THF
-78 o
6.
7.
Saisaha, P.; Nerungsi, C.; Iamsaard, S.; Thongpanchang, T.
Tetrahedron Lett. 2009, 50, 4217–4220.
H
C
Sakulsombut, M. Physical organic chemistry of oxiranyl “remote”
anions derived from epoxy ketoester: competition between keto-
and ester-stabilization [M.Sc. Thesis in Organic Chemistry].
Bangkok: Faculty of Graduate Studies, Mahidol University; 2004.
Iammsard S. Ether Stabilized Oxiranyl remote Anions [M.Sc.
thesis in Organic Chemistry]. Bangkok: Faculty of Graduate
Studies, Mahidol University; 2010.
LDA, THF
-78 o
C
8.
9.
OH
11
Williams, P. G.; Miller, E. D.; Asolkar, R. N.; Jensen, P. R.;
Fenical, W. J. Org. Chem. 2007, 72(14), 5025-5034.
O
10. Lee, S. J.; Cassady, J. M.; Hurley, L. H. J. Am. Chem. Soc. 1996,
118 (24), 5553-5561.
OH
11. Xu, J. B.; Lin, Y.; Dong, S. H.; Wang, F.; Yue, J. M. J. Nat. Prod.
2013, 76 (10), 1872-1880.
12
12. Marco-Contelles, J.; Molina, M. T.; Anjum, S. Chem. Rev. 2004,
104 (6), 2857-2900.
O
H
R
O
OMe
(a) Labadie, G. R.; Luna. L. E.; Gonzalez-Sierra, M.; Cravero, R.
M. Eur. J. Org. Chem. 2003, 3429-3434. (b) Mandal. M.; Yun,
M.; Dudley, G.; Lin, S.; Tan, D. S.; Danishefsky, S. D. J. Org.
Chem. 2005, 70, 10619-10637. (c) Tanimoto, H.; Kato, T.; Chida,
N. Tetrahedron Lett. 2007, 48, 6267-6270.
O
O
R
O
13. Matsubara, T.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Angew.
Chem. Int. Ed. 2014, 53,757-760.
14. Leiyang, Lv.; Barry, B. S.; Zhiping, L. J. Org. Chem. 2017, 82,
5487-5491.
15. Tan, Z.; Negishi, E. I. Org. Lett. 2006, 8, 2783-2785.
16. Park, H. S.; Kwon, D. W.; Lee, K.; Kim, Y. H. Tetrahedron Lett.
2008, 49, 1616-1618.
17. Scott, K.; Stonehouse, J.; Keeler, J.; Hwang, Z. L.; Shaka, A. J. J.
Am. Chem. Soc. 1995, 117, 4199-4200.
18. Selective NOE spectra, HMBC spectra and stereochemistry
assignment of 8f and 8g are presented in the ESI.
19. (a) Kowalski, C.; Creary, X.; Rollin, A. J.; Burke, M. C. J. Org.
Chem. 1978, 13, 2601–2607; (b) Woo, E. P.; Mak, K. T.
Tetrahedron Lett. 1974, 47, 4095-4098.
20. Hedidi, M.; Maillard, J.; Erb, W.; Lassagne, F.; Halauko, Y. S.;
Ivashkevich, O. A.; Matulis, V. E.; Roisnel, T.; Dorcet, V.;
Scheme 5. Reaction of the oxiranyl remote anions of ,-epoxy
cinnamate derivatives with fluorenone.
In conclusion, an investigation of the oxiranyl remote anions
derived from ,-epoxy cinnamate derivatives and their reactions
with variety of electrophiles were described. Chelation between
the lithium atom and an ester group via a five-membered cyclic
intermediate plays a key role in the stabilization of the anion. The
oxiranyl remote anions of an ester could be applied in the
preparation of various ,-epoxy--butyrolactones, a useful