Photochemical Cleavage of Vinyl Halides
J . Org. Chem., Vol. 63, No. 25, 1998 9293
Ch a r t 2. Rela tive Ca r boca tion Sta biliza tion
Sch em e 3
+
En er gy to C2H3 (in k ca l/m ol) fr om Differ en ces in
H- Affin ity
partitioning between radical pair (R•X•) and contact ion
pair (R+X-) could be followed kinetically.12 However, we
call the attention upon a structural difference of the
phenyl vs vinyl halide: the parent linear13 vinyl cation
(Vy+), in comparison with the necessarily bent14 phen-
ylium ion (Ph+), is provided with an “extra hand”
enabling additional stabilization by substituents (Chart
conjugation becomes then possible, and it is calculated
(see Experimental Section) to give an additional stabili-
zation of ca. 12 kcal/mol to the 1,3-butadien-2-yl cation.15
Analogously, the R-styryl cation is expected and calcu-
lated15 to gain π-p(C+) stabilization of ca. 24 kcal/mol
whenever full conjugation of the positive charge with the
aromatic ring is conformationally allowed. It is not
unlikely, even though not straightforward, that this
structural effect, namely, the absence of conjugative
stabilization for the Ph+ ion, can play a role in the
dynamic of the photocleavage process, so to help to
explain why photoheterolysis of vinyl halides, bearing
appropriate substituents, may take over their photo-
homolysis (Scheme 1) in solution. An investigation in this
direction is desirable and planned.
+
2). For example, when the R C-H bond of C2H3 is
substituted with a methyl, a remarkable stabilization of
ca. 22 kcal/mol results for CH2dC(+)CH3.15
A similar gain in stabilization is not possible for the
phenylium ion. An even stronger effect results if the R
C-H of the ethenyl cation is substituted with a group
capable of π-conjugation, as for a vinyl substituent being
coplanar with the empty p orbital and perpendicular to
+ 15,16
We became interested in this dichotomy in the behavior
of the vinyl halides in connection with our studies on the
vinylic SRN1 reaction,17 whose propagation cycle is re-
ported in Scheme 3.
the other double bond in C4H5
.
An allylic-type
(6) The homolytic D(R-Br) values given in Chart 1 have already
been reported.5 The heterolytic D(R-Br) values are derived from the
following thermochemical equations, where IE are the ionization
potentials of the radicals: D298(R-Br) ) ∆fH298(R+) + ∆fH298(Br-) -
∆fH298(RBr) (eq a) and ∆fH298(R•) + IE f ∆fH298(R+) (eq b). The IE of
Ph• is 8.32 eV,7 while its ∆fH298 is 81.1 kcal/mol;8 from eq b one
accordingly obtains 272.8 kcal/mol for ∆fH298(Ph+). Analogously, the
IE of CH2dCH• is 8.25 eV,7 and ∆fH298(CH2dCH•) is 71.7 kcal/mol,9
from which ∆fH298(CH2dCH+) ) 261.9 kcal/mol. From ∆fH298(Br-) )
-50.9 kcal/mol,10 ∆fH298(PhBr) ) 25.2 kcal/mol,11 and ∆fH298(CH2d
CHBr) ) 18.9 kcal/mol,11 eq a gives the heterolytic D(R-Br) values of
Ph-Br and of CH2dCHBr as 196.7 and 192.1 kcal/mol, respectively
(Chart 1).
(7) Lias, S. G.; Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron,
J . T.; Holmes, J . L.; Levin, R. D.; Liebman, J . F.; Kafafi, S. A. Ionization
Energetics Data. In NIST Standard Reference Database Number 69;
Mallard, W. G., Linstrom, P. J ., Eds.; National Institute of Standards
and Technology: Gaithersburg, MD, 1997 (http://webbook.nist.gov).
(8) Davico, G. E.; Bierbaum, V. M.; DePuy, C. H.; Ellison, G. B.;
Squires, R. R. J . Am. Chem. Soc. 1995, 117, 2590.
Evidence for the intermediacy of a vinyl radical in this
nucleophilic substitution process was provided,17d in
analogy with the intermediacy of aryl radical in the
reaction of aryl halides.18 In keeping with the aromatic
case, the vinylic SRN1 process is likely to be initiated by
photostimulated electron transfer from a nucleophile19
to the vinyl halide, forming an intermediate radical anion
that then fragments to the vinyl radical. Could the
photochemical induction directly provoke also the het-
erolysis of the C-X bond of the substrate, giving the
corresponding vinyl cation? The product of the nucleo-
philic substitution could then (also) arise from a cation-
to-anion coupling (eq 1).
(9) Ervin, K. M.; Gronert, S.; Barlow, S. E.; Gilles, M. K.; Harrison,
A. G.; Bierbaum, V. M.; DePuy, C. H.; Lineberger, W. C.; Ellison, G.
B. J . Am. Chem. Soc. 1990, 112, 5750.
To better appreciate this subtle feature of the vinylic
SRN1, which is not shared by its aromatic counterpart,
(10) Bartmess, J . E. NIST Negative Ion Energetics Database, Version
3.0, Standard Reference Database 19B; National Institute of Standards
and Technology: Gaithersburg MD, 1993.
(11) Pedley, J . B.; Rylance, J . Sussex NPL Computer Analysed
Thermochemical Data: Organic and Organometallic Compounds;
University of Sussex: Sussex, U.K., 1977.
(12) (a) Lipson, M.; Deniz, A. A.; Peters, K. S. J . Phys. Chem. 1996,
100, 3580. (b) Dreyer, J .; Peters, K. S. J . Phys. Chem. 15156. (c) Lipson,
M.; Deniz, A. A.; Peters, K. S. Chem. Phys. Lett. 1998, 288, 781. (d)
Bartl, J .; Steenken, S.; Mayr, H.; McClelland, R. A. J . Am. Chem. Soc.
1990, 112, 6918.
(13) (a) Mayr, H.; Schneider, R.; Wilhelm, D.; Schleyer, P. v. R. J .
Org. Chem. 1981, 46, 5336. (b) Rappoport, Z. In Reactive Intermediates;
Abramovitch, R. A., Ed.; Plenum Press: New York, 1983; Vol. 3, pp
427-615. (c) Berkowitz, J .; Mayhew, C. A.; Ruscic, B. J . Chem. Phys.
1988, 88, 7397. (d) Lindh, R.; Rice, J . E.; Lee, T. J . J . Chem. Phys.
1991, 94, 8008.
(16) Apeloig, Y.; Mu¨ller, T. In Dicoordinated Carbocations; Rap-
poport, Z.; Stang, P. J ., Eds.; Wiley: Chichester, U.K., 1997; Chapter
2.
(17) (a) Galli, C.; Gentili, P. J . Chem. Soc., Chem. Commun. 1993,
570. (b) Galli, C.; Gentili, P.; Rappoport, Z. J . Org. Chem. 1994, 59,
6786. (c) Amatore, C.; Galli, C.; Gentili, P.; Guarnieri, A.; Schottland,
E.; Rappoport, Z. J . Chem. Soc., Perkin Trans. 2 1995, 2341. (d) Galli,
C.; Gentili, P.; Guarnieri, A.; Rappoport, Z. J . Org. Chem. 1996, 61,
8878.
(18) (a) Bunnett, J . F. Acc. Chem. Res. 1978, 11, 413. (b) Rossi, R.
A.; De Rossi, R. H. Aromatic Substitution by the SRN1 Mechanism; ACS
Monograph 178; American Chemical Society: Washington, DC, 1983.
(c) Rossi, R. A.; Pierini, A. B.; Pen˜e´n˜ory, A. B. In The Chemistry of
Functional Groups. Supplement D2: The Chemistry of Halides, Pseudo-
halides and Azides; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester,
U.K., 1995; Chapter 24.
(14) (a) Tasaka, M.; Ogata, M.; Ichikawa, H. J . Am. Chem. Soc. 1981,
103, 1885. (b) Angelini, G.; Fornarini, S.; Speranza, M. J . Am. Chem.
Soc. 1982, 104, 4773. (c) Filippi, A.; Lilla, G.; Occhiucci, G.; Sparapani,
C.; Ursini, O.; Speranza, M. J . Org. Chem. 1995, 60, 1250.
(15) Aue, D. H. In Dicoordinated Carbocations; Rappoport, Z., Stang,
P. J ., Eds.; Wiley: Chichester, U.K., 1997; Chapter 3.
(19) (a) Hoz, S.; Bunnett, J . F. J . Am. Chem. Soc. 1977, 99, 4690.
(b) Fox, M. A.; Younathan, J .; Fryxell, G. E. J . Org. Chem. 1983, 48,
3109. (c) Tolbert, L. M.; Nesselroth, S. M.; Netzel, T. L.; Raya, N.;
Stapleton, M. J . Phys. Chem. 1992, 96, 4492. (d) Ahbala, M.; Hapiot,
P.; Houmam, A.; J ouini, M.; Pinson, J .; Save´ant, J .-M. J . Am. Chem.
Soc. 1995, 117, 11488.