C O M M U N I C A T I O N S
Scheme 1. Proposed Mechanism for the Formation of 2
crystallographic analyses. O.K. thanks Dr. Patrick J. Walsh, Richard
P. Hsung, and Chulbom Lee for helpful discussions.
Supporting Information Available: Representative experimental
procedures and spectral data for all new compounds (PDF). Crystal-
lographic data for 2a and 3a (CIF). This material is available free of
References
(1) Butler, M. S. J. Nat. Prod. 2004, 67, 2141.
(2) (a) ComprehensiVe Asymmetric Catalysis I-III; Jacobsen, E. N., Pfaltz,
A., Yamamoto, H., Eds.; Springer: Berlin, 1999. (b) Asymmetric Synthesis,
2nd ed.; Ojima, I., Ed.; VCH: New York, 2000. (c) Fache, F.; Schultz,
E.; Tommasino, M. L.; Lemaire, M. Chem. ReV. 2000, 100, 2159. (d)
Chiral Reagents for Asymmetric Synthesis; Paquette, L. A., Ed.; Wiley:
Chichester, 2003. (e) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3,
719.
Table 2. Syntheses of Various Azolidinesa
(3) Katritzky, A. R. Chem. ReV. 2004, 104, 2125-2812 (special issue on
heterocycles).
(4) (a) Zhu, X.-F.; Henry, C. E.; Kwon, O. J. Am. Chem. Soc. 2007, 129,
6722. (b) Castellano, S.; Fiji, H. D. G.; Kinderman, S. S.; Watanabe, M.;
de Leon, P.; Tamanoi, F.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 5843.
(c) Mercier, E.; Fonovic, B.; Henry, C. E.; Kwon, O.; Dudding, T.
Tetrahedron Lett. 2007, 48, 3617. (d) Dudding, T.; Kwon, O.; Mercier,
E. Org. Lett. 2006, 8, 3643. (e) Tran, Y. S.; Kwon, O. Org. Lett. 2005, 7,
4289. (f) Zhu, X.-F.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O.
Org. Lett. 2005, 7, 1387. (g) Zhu, X.-F.; Schaffner, A.-P.; Li, R. C.; Kwon,
O. Org. Lett. 2005, 7, 2977. (h) Zhu, X.-F.; Henry, C. E.; Kwon, O.
Tetrahedron 2005, 61, 6276. (i) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am.
Chem. Soc. 2003, 125, 4716.
(5) (a) Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2003,
125, 8696. (b) Inanaga, J.; Baba, Y.; Hanamoto, T. Chem. Lett. 1993, 2,
241.
(6) Intramolecular double-Michael reactions of acetylenes. Double-carbo-
Michael: (a) Grossman, R. B. Synlett 2001, 13. Double-thia-Michael: (b)
Kuroda, H.; Tomita, I.; Endo, T. Synth. Commun 1996, 26, 1539. Double-
oxa-Michael: (c) Ariza, X.; Costa, A. M.; Faja, M.; Pineda, O.; Vilarrasa,
J. Org. Lett. 2000, 2, 2809. (d) Forsyth, C. J.; Hao, J.; Aiguade, J. Angew.
Chem., Int. Ed. 2001, 40, 3663. Double-aza-Michael: (e) Diez-Barra, E.;
Guerra, J.; Hornillos, V.; Merino, S.; Tejeda, J. Tetrahedron Lett. 2004,
45, 6937.
(7) The structures of 2a and 3a were confirmed through X-ray crystallographic
analysis. See the Supporting Information for details.
(8) Other bases known to facilitate Michael addition of alcohols to alkynes,
such as K2CO3 and morpholine, did not provide any cyclized product. (a)
Eaton, P. E.; Stubbs, C. E. J. Am. Chem. Soc. 1967, 89, 5722. (b) Lee,
E.; Tae, J. S.; Lee, C.; Park, C. M. Tetrahedron Lett. 1993, 34, 4831.
(9) For examples of the use of bisphosphines in organocatalysis, see: (a)
Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 10819. (b) Trost, B.
M.; Dake, G. R. J. Am. Chem. Soc. 1997, 119, 7595. (c) Kamijo, S.;
Kanazawa, C.; Yamamoto, Y. Tetrahedron Lett. 2005, 46, 2563. (d) Silva,
F.; Sawicki, M.; Gouverneur, V. Org. Lett. 2006, 8, 5417.
(10) Alternatively, the deprotonated nucleophile can add to the acetylene to
form a vinyl anion, which will deprotonate the pronucleophile and form
3. In this scenario, the phosphine is an initiator for the actual catalytic
cycle. See: Grossman, R. B.; Comesse, S.; Rasne, R. M.; Hattori, K.;
Delong, M. N. J. Org. Chem. 2003, 68, 871 and references therein.
(11) Alternatively, one can invoke a mechanism where intermediate 6 functions
as a base to deprotonate 3, which subsequently undergoes intramolecular
Michael addition. The resulting enolate deprotonates another molecule
of 3 to reiterate the productive cycle. Ion paring between the protonated
6 and deprotonated 3 (and the following intermediates) has been proposed
previously; see: (a) ref 5a. (b) White, D. A.; Baizer, M. M. Tetrahedron
Lett. 1973, 14, 3579.
a All reactions were performed using 1 mmol of the substrate, 1.1 equiv
of the corresponding acetylene, and 10 mol % of DPPP in CH3CN at
80 °C for 9 h. b Isolated yields after chromatographic purification. c De-
1
termined through H NMR spectroscopic analysis.
(12) The â-alkoxy acrylate intermediate 3a smoothly converted to the cyclized
product 2a in 94% yield when treated with DPPP.
(13) Although hexamethylphosphorous triamide (HMPT) did not facilitate any
Michael reaction, Verkade’s proazaphosphatrane (10 mol %) provided
the desired cyclized product in 42% yield, indicating that other donators
of electron lone pairs can provide similar anchimeric assistance. (a)
Kisanga, P. B.; Ilankumaran, P.; Fetterly, B. M.; Verkade, J. G. J. Org.
Chem. 2002, 67, 3555. (b) Verkade, J. G.; Kisanga, P. B. Aldrichimica
Acta 2004, 37, 3.
(14) Anderson, J. C.; Cubbon, R.; Harding, M.; James, D. S. Tetrahedron:
Asymmetry 1998, 9, 3461.
(15) 1,2-Diamine pronucleophiles are known to provide piperazines under
phosphine catalysis; see: Lu, C.; Lu, X. Org. Lett. 2002, 4, 4677.
(16) (a) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435. (b) Daly, J. W.; Spande,
T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556.
(17) Mao, H.; Joly, G. J.; Peeters, K.; Hoornaert, G. J.; Compernolle, F.
Tetrahedron 2001, 57, 6995.
(18) (a) Kobayashi, J.; Morita, H. In The Alkaloids; Cordell, G. A., Ed.;
Academic: New York, 2003; Vol. 60, p 165. (b) Hanessian, S.; Tremblay,
M.; Petersen, J. F. W. J. Am. Chem. Soc. 2004, 126, 6064. (c) Aron, Z.
D.; Overman, L. E. Org. Lett. 2005, 7, 913.
are present in a large number of natural products, are often
challenging synthetic targets.18
In summary, we have developed a remarkably simple protocol
for the synthesis of oxazolidines, thiozolidines, pyrrolidines, and
octahydroindoles. This mixed double-Michael process operates best
under bisphosphine catalysis to provide â-amino carbonyl deriva-
tives of azolidines19 in excellent yields and with high diastereose-
lectivities. Presumably, the use of bis(diphenylphosphine) deriva-
tives allows intramolecular stabilization of the phosphonium ion
intermediates. We are currently exploring the development of an
enantioselective version of this ring-forming process from achiral
starting materials and its application to the synthesis of selected
drug candidates.
(19) Fustero, S.; Jimenez, D.; Sanchez-Rosello, M.; del Pozo, C. J. Am. Chem.
Soc. 2007, 129, 6700.
Acknowledgment. This study was funded by the NIH
(R01GM071779). We thank Dr. Saeed Khan for performing the
JA073754N
9
J. AM. CHEM. SOC. VOL. 129, NO. 43, 2007 12929