1870
S. Manku et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1866–1870
6. Zhou, N.; Moradei, O.; Raeppel, S.; Leit, S.; Fréchette, S.; Gaudette, F.; Paquin, I.;
Table 4
Bernstein, N.; Bouchain, G.; Vaisburg, A.; Jin, Z.; Gillespie, J.; Wang, J.; Fournel,
M.; Yan, P. T.; Trachy-Bourget, M.-C.; Kalita, A.; Lu, A.; Rahil, J.; MacLeod, A. R.;
Li, Z.; Besterman, J. M.; Delorme, D. J. Med. Chem. 2008, 51, 4072.
PK profile in rat of selected compounds
Compound AUC (PO) lM h/(mg/kg) Cl (IV) (L/h)/kg Vss L/kg t1/2 (h) %F
7. Darkin-Rattray, S. J.; Gurnett, A. M.; Myers, R. W.; Dulski, P. M.; Crumley, T. M.;
Allocco, J. J.; Cannova, C.; Meinke, P. T.; Colletti, S. L.; Bednarek, M. A.; Singh, S.
B.; Goetz, M. A.; Dombrowski, A. W.; Polishook, J. D.; Schmatz, D. M. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 13143.
2a
12d
12h
0.063
0.005
0.023
2.5
2.3
0.41
0.02
0.78
0.03
0.025
1.6
1.2
4.9
0.5
0.5
8. (a) Wahhab, A.; Smil, D.; Ajamian, A.; Allan, M.; Chantigny, Y.; Therrien, E.;
Nguyen, N.; Manku, S.; Leit, S.; Rahil, J.; Yan, T. P.; Li, Z.; Besterman, J.; Déziel, R.
Bioorg. Med. Chem. Lett. 2009, 19, 336; (b) For experimental details see: Smil, D.;
Leit, S.; Ajamian, A.; Allan, M.; Chantigny, Y. A.; Déziel, R.; Therrien, E.; Wahhab,
A.; Manku, S. International Patent WO 07/143822, 2007.; (c) The enzymatic
assay followed the fluorescent signal obtained from the HDAC catalyzed
deacetylation of coumarin-labeled lysine. The substrate used for HDAC1, 2, 3, 6,
NK2 antagonists bearing a sulfamide group, and have ascribed
their compounds’ poor oral absorption to weak intrinsic perme-
ability and transporter-mediated efflux from the GI tract.10
In conclusion, a structure–activity investigation around the
originally disclosed lysine-based sulfamide, 2a has revealed that
subtle modifications around the periphery of the molecule are tol-
erated when tested against HDAC 1 and 6 isotypes and in
293Tcells, but more significant modifications resulted in consider-
able losses in HDAC1 activity or, in some cases, both HDAC1 and
HDAC6. However, replacement of the core amide linkage on 2a
with different heterocycles led to compounds of equal potency
with improved pharmacokinetic profiles. In particular, benzimid-
azole 12h showed promising potency and metabolic stability, how-
ever, further optimization of its pharmacokinetic properties is
needed.
and 8 was Boc-Lys(
e-acetyl)-AMC (Bachem Biosciences Inc.) and Boc-Lys-(e-
trifluormethylacetyl)-AMC (synthesized in-house) for HDAC4, 5, and 7.
Recombinant enzymes expressed in baculovirus were used. HDAC1, 2, and 3
were C-terminal FLAG-tagged and HDAC4 (612–1034), HDAC5 (620–1122),
HDAC6, HDAC7 (438–915), and HDAC8 are N-terminal His-tagged. The
enzymes were incubated with the compounds in assay buffer (25 mM Hepes,
pH 8.0, 137 mM NaCl, 1 mM MgCl2 and 2.7 mM KCl) for 10 min at ambient
temperature in black 96-well plates. The substrate was added into enzyme–
compound mixture and incubated at 37 °C. Reaction was quenched by adding
trypsin and TSA to a final concentration of 1 mg/mL and 1
lM, respectively.
Fluorescence was measured using fluorimeter (SPECTRAMAX GeminiXS,
a
Molecular Devices). The 50% inhibitory concentrations (IC50) for inhibitors
were determined by analyzing dose–response inhibition curves with GraFit.;
(d) The whole cell assay was done in cultured Human Embryonic Kidney cells
(293T), which were treated with inhibitors for 16 h and then incubated with
Boc-Ac-Lys-AMC, a membrane permeable HDAC substrate. After 90 min at
37 °C, the reaction was quenched with trypsin and TSA by to
a final
References and notes
concentration of 1 mg/mL and 1 M, respectively. The cells were lysed with
l
1% NP-40. Fluorescence was read at Ex 360 nm, Em 470 nm, using GeminiXS
fluorimeter.
1. (a) Bolden, J. E.; Peart, M. J.; Johnstone, R. W. Nat. Rev. Drug Discovery 2006, 5,
769; (b) De Ruijter, A. J.; van Gennip, A. H.; Caron, H. N.; Kemp, S.; van
Kuilenburg, A. B. Biochem. J. 2003, 370, 737; (c) Minnucci, S.; Pelicci, G. Nat. Rev.
Cancer 2006, 6, 38; (d) Dey, P. Curr. Med. Chem. 2006, 13, 2909.
2. (a) Bieliauskas, A. V.; Pflum, M. K. H. Chem. Soc. Rev. 2008, 37, 1402; (b)
Moradei, O.; Maroun, C. R.; Paquin, I.; Vaisburg, A. Curr. Med. Chem. Anti-Cancer
Agents 2005, 5, 529.
3. Richon, V. M.; Webb, Y.; Merger, R.; Sheppard, T.; Jursic, B.; Ngo, L.; Civoli, F.;
Breslow, R.; Rifkind, R. A.; Marks, P. A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 5705.
4. (a) Grant, S.; Easley, C.; Kirkpatrick, P. Nat. Rev. Drug Discovery 2007, 6, 21; (b)
Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. J. Med. Chem. 2008, 51, 1505;
(c) Bruserud, O.; Stapnes, C.; Ersvaer, E.; Gjertsen, B. T.; Ryningen, A. Curr.
Pharm. Biotechnol 2007, 8, 388.
9. For general references on amide isosteres see: (a) Venkatesan; Kim, B. H. Curr.
Med. Chem. 2002, 9, 2243; (b) Borg, S.; Estenne-Bouhtou, G.; Luthman, K.;
Csöregh, I.; Hesselink, W.; Hacksell, U. J. Org. Chem. 1995, 61, 3112–3120; (c)
Borg, S.; Vollinga, R. C.; Labarre, M.; Payza, K.; Terenius, L.; Luthman, K. J. Med.
Chem. 1999, 42, 4331; For amide isosteres used for HDAC inhibitors see: (d)
Jones, P.; Altamura, S.; De Francesco, R.; Gonzalez Paz, O.; Kinzel, O.; Mesiti, G.;
Monteagudo, E.; Pescatore, G.; Rowley, M.; Verdirame, M.; Steinkuhler, C. A. J.
Med. Chem. 2008, 51, 2350; (e) Pescatore, G.; Kinzel, O.; Attenni, B.; Cecchetti,
O.; Foire, F.; Fonsi, M.; Rowley, M.; Schultz-Fademrecht, C.; Serafini, S.;
Steinkülher, C.; Jones, P. Bioorg. Med. Chem. Lett. 2008, 18, 5528.
10. (a) Middleton, D. S.; MacKenzie, A. R.; Newman, S. D.; Corless, M.; Warren, A.;
Marchington, A. P.; Jones, B. Bioorg. Med. Chem. Lett. 2005, 15, 3957; (b)
Beaumont, K.; Harper, A.; Smith, D. A.; Bennett, J. Eur. J. Pharm. Sci. 2000, 12, 41.
5. Chen, J. S.; Faller, D. V.; Spanjaard, R. A. Curr. Cancer Drug Targets 2003, 3, 219.