ActiVation of Murine RNase L
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 13 3961
(10) Charachon, G.; Sobol, R. W.; Bisbal, C.; Salehzada, T.; Silhol, M.;
Charubala, R.; Pfleiderer, W.; Lebleu, B.; Suhadolnik, R. J.
Phos-phorothioate analogues of (2′,5′) (A)4: agonist and
antagonist activities in intact cells. Biochemistry 1990, 29, 2550-
2556.
(11) Beigelman, L.; Matulic-Adamic, J.; Haeberli, P.; Usman, N.; Dong,
B.; Silverman, R. H.; Khamnei, S.; Torrence, P. F. Synthesis and
biological activities of a phosphorodithioate analog of 2′,5′-oligoad-
enylate (2-5A). Nucleic Acids Res. 1995, 23, 3989-3994.
(12) Cramer, H.; Player, M. R.; Torrence, P. F. Discrimination between
ribonuclease H- and ribonuclease L-mediated RNA degradation by
2′-O-methylated 2-5A-antisense oligonucleotides. Bioorg. Med.
Chem. Lett. 1999, 9, 1049-1054.
(13) Zhou, L. H.; Civitello, E. R.; Gupta, N.; Silverman, R. H.; Molinaro,
R. J.; Anderson, D. E.; Torrence, P. F. Endowing RNase H-inactive
antisense with catalytic activity: 2-5A-morphants. Bioconjugate
Chem. 2005, 16, 383-390.
(14) Leaman, D. W.; Longano, F. J.; Okicki, J. R.; Soike, K. F.; Torrence,
P. F.; Silverman, R. H.; Cramer, H. Targeted therapy of respiratory
syncytial virus in African Green Monkeys by intranasally adminis-
tered 2-5A antisense. Virology 2002, 292, 70-77.
The samples were electrophoresed in a denaturing 20% polyacryl-
amide gel (7 M urea, 0.09 M Tris-borate at pH 8.3, 2 mM EDTA,
and 20% acrylamide). The gels were dried and analyzed using a
Phosphor Imager (Molecular Dynamics). The scanned gels were
quantitated with ImageQuant software (Molecular Dynamics).
Stability of pA4 and Its Analogues in Soluble Mouse Spleen
Homogenate. The resistance of oligonucleotides toward degradation
by nucleases from soluble mouse spleen homogenate was checked
on a Luna C18 column (5 µm, 150 × 4.6 mm, Phenomenex) at
260 nm, using a linear gradient of acetonitrile in aqueous 0.1%
(v/v) TFA (0-12% in 70 min) at a flow rate of 1 mL/min. The
soluble mouse spleen homogenate (9 µL) was mixed with 2.5 nmol
(1 µL) of pA4 or its analogue. The reaction mixtures were kept at
4 °C and periodically checked by HPLC (after mixing the sample
with 10 µL of aqueous 0.1% (v/v) TFA and centrifugation at
14 000g for 10 min). The peaks of oligonucleotides and their
degradation products were integrated using CSW 1.6 software (Data
Apex, Prague).
(15) Xu, Z.; Kuang, M.; Okicki, J. R.; Cramer, H.; Chaudhary, N. Potent
inhibition of respiratory syncytial virus by combination treatment
with 2-5A antisense and ribavirin. AntiViral Res. 2004, 61, 195-
206.
(16) Leaman, D. W.; Cramer, H. Controlling gene expression with 2-5A
antisense. Methods: A Companion to Methods in Enzymology 1999,
18, 252-265.
(17) Kondo, Y.; Koga, S.; Komata, T.; Kondo, S. Treatment of prostate
cancer in Vitro and in ViVo with 2-5A-anti-telomerase RNA compo-
nent. Oncogene 2000, 19, 2205-2211.
(18) Xiao, W.; Li, G.; Player, M. R.; Maitra, R. K.; Waller, C. F.;
Silverman, R. H.; Torrence P. F. Nuclease-resistant composite 2′,5′-
oligoadenylate-3′,5′-oligonucleotides for the targeted destruction of
RNA: 2-5A-iso-antisense. J. Med. Chem. 1998, 41, 1531-
1539.
Acknowledgment. This work is dedicated to our colleague
and excellent team member Martina Pressova, Ph.D., who
passed away last year. We gratefully acknowledge the financial
support by grants No. A4055101 and No. 203/05/P557 (both
GA Acad. Sci., Czech Rep.) and Network of Excellence EMIL
(sixth Framework) under research project Z40550506 (Acad.
Sci., Czech Rep.). We are indebted to Dr. Zdenek Tocik (IOCB)
for valuable discussions, Dr. Marcela Novotna (IOCB) for the
purification of modified oligoadenylates, and the staff of the
Department of Organic Analysis of IOCB for the measurements
of mass spectra.
(19) Endova, M.; Masojidkova, M.; Budesinsky, M.; Rosenberg, I. 2′,3′-
O-Phosphonoalkylidene derivatives of ribonucleotides: synthesis and
reactivity. Tetrahedron 1998, 54, 11151-11186.
(20) Endova, M.; Masojidkova, M.; Budesinsky, M.; Rosenberg, I. 3′,5′-
O-Phosphonoalkylidene derivatives of 1-(2-deoxy-â-D-threo-pento-
furanosyl)thymine: synthesis and reactivity. Tetrahedron 1998, 54,
11187-11208.
(21) Kralikova, S; Budesinsky, M.; Masojidkova, M.; Rosenberg, I.
Efficient synthesis of 2′-deoxynucleoside 3′-C-phosphonates: reactiv-
ity of geminal hydroxyphosphonate moiety. Nucleosides, Nucleotides
& Nucleic Acids 2000, 19, 1159-1183.
(22) Kralikova, S; Budesinsky, M.; Masojidkova, M.; Rosenberg I.
Geminal hydroxy phosphonate derivatives of nucleosides: a novel
class of nucleoside 5-monophosphate analogues. Tetrahedron Lett.
2000, 41, 955-958.
Supporting Information Available: 1H, 13C NMR, and HR
FAB data for compounds 1-4, MALDI-TOF MS, purity data, and
retention time data (tR) for oligoadenylates 6-16, protocol for the
synthesis of oligoadenylates, synthesis of biotinylated pA4 17, and
the time-dependent profiles of 5′-[32P]-r(C11U2C7) cleavage by
murine RNase L. This material is available free of charge via the
References
(1) Williams, B. R. G.; Kerr, I. M. Inhibition of protein synthesis by
2′-5′ linked adenine oligonucleotides in intact cells. Nature 1978,
276, 88-90.
(2) Player, M. R.; Torrence, P. F. The 2-5A system: modulation of viral
and cellular processes through acceleration of RNA degradation.
Pharmacol. Ther. 1998, 78, 55-113.
(23) Rejman, D.; Masojidkova, M.; De Clercq, E.; Rosenberg, I. 2′C-
alkoxy and 2′-C-aryloxy derivatives of N-(2-phosphonomethoxy-
ethyl)-purines and -pyrimidines: synthesis and biological activity.
(3) Torrence, P. F.; Imai, J.; Lesiak, K.; Jamoulle, J. C.; Sawai, H.
Oligonucleotide structural parameters that influence binding of 5′-
O-triphosphoadenylyl-(2′-5′)-adenylyl-(2′-5′)-adenosine to the 5′-O-
triphosphoadenylyl-(2′-5′)-adenylyl-(2′-5′)-adenosine dependent en-
doribonuclease: chain length, phosphorylation state, and heterocyclic
base. J. Med. Chem. 1984, 27, 726-733.
(4) Castelli, J. C.; Hassel, B. A.; Maran, A.; Paranjape, J.; Hewitt, J. A.;
Li, X.; Hsu, Y.; Silverman, R. H.; Youle, R. J. The role of 2′-5′-
oligoadenylate-activated ribonuclease L in apoptosis. Cell Death
Differ. 1998, 5, 313-320.
(5) Adah, S. A.; Bayly, S. F.; Cramer, H.; Silverman, R. H.; Torrence,
P. F. Chemistry and biochemistry of 2′,5′-oligoadenylate-based
antisense strategy. Curr. Med. Chem. 2001, 8, 1189-1212.
(6) Tanaka, N.; Nakanishi, M.; Kusakabe, Y.; Goto, Y.; Kitade, Y.;
Nakamura, K. T. Structural basis for recognition of 2′,5′-linked
oligoadenylates by human RNase L. EMBO J. 2004, 23, 3929-
3938.
(7) Charubala, R.; Pfleiderer, W.; Suhadolnik, R. J.; Sobol, R. W.
Chemical synthesis and biological activity of 2′-5′-phosphorothioate
tetramer cores. Nucleosides Nucleotides 1991, 10, 383-388.
(8) Shimazu, M.; Shinozuka, K.; Sawai, H. Facile and stereoselective
synthesis of 2′,5′-oligothioadenylate by UO22+ ion catalyst. Nucleic
Acids Res. 1992, 20, 105-106.
Nucleosides, Nucleotides
1522.
& Nucleic Acids 2001, 20, 1497-
(24) Kralikova, S; Masojidkova, M.; Budesinsky, M.; Rosenberg, I. Study
on reactivity and protection of the alpha-hydroxyphosphonate moiety
in 5′-nucleotide analogues: formation of the 3′-O-P-C(OH)-C4′
internucleotide linkage. Nucleosides, Nucleotides & Nucleic Acids
2003, 22, 329-347.
(25) Rosenberg, I. In Frontiers in Nucleosides and Nucleic Acids; Schinazi,
R. F., Liotta, D. C., Eds.; IHL Press: Tucker, GA, 2004; pp 519-
548.
(26) Hakimelahi, G. H.; Proba, Z. A.; Ogilvie, K. K. New catalysts and
procedures for the dimethoxytritylation and selective silylation of
ribonucleotides. Can. J. Chem. 1982, 60, 1106-1113.
(27) Silverman, R. H.; Wreschner, D. H.; Gilbert, C. S.; Kerr, I. M.
Synthesis, characterization and properties of ppp(A2′p)nApCp and
related high-specific-activity 32P-labeled derivatives of ppp(A2′p)-
nA. Eur. J. Biochem. 1981, 115, 79-85.
(28) Torrence, P. F.; Brozda, D.; Alster, D.; Charubala, R.; Pfleiderer,
W. Only one 3′-hydroxyl group of ppp5′A2′p5′A2′p5′A (2-5A) is
required for activation of the 2-5A-dependent endonuclease. J. Biol.
Chem 1988, 263, 1131-1139.
(29) Kovacs, T.; Pabuccuoglu, A.; Lesiak, K.; Torrence, P. F. Fluorodeoxy
sugar analogues of 2′,5′-oligoadenylate probes of hydrogen bonding
in enzymes of the 2-5A system. Bioorg. Chem. 1993, 21, 192-
208.
(30) Kalinichenko, E. N.; Podkopaeva, T. L.; Poopeiko, N. E.; Kelve,
M.; Saarma, M.; Mikhailopulo, I. A.; van den Boogaart, J. E.; Altona,
(9) Kariko, K.; Li, S.; Sobol, R. W.; Suhadolnik, R. J.; Charubala, R.;
Pfleiderer, W. Phosphorothioate analogues of 2′,5′-oligoadenylate.
Activation of 2′,5′-oligoadenylate-dependent endoribonuclease by
2′,5′-phosphorothioate cores and 5-monophosphates. Biochemistry
1987, 26, 7136-7142.