CHEMBIOCHEM
FULL PAPERS
[3] J. M. Carlton, S. V. Angiuoli, B. B. Suh, T. W. Kooij, M. Pertea, J. C. Silva,
M. D. Ermolaeva, J. E. Allen, J. D. Selengut, H. L. Koo, J. D. Peterson, M.
Pop, D. S. Kosack, M. F. Shumway, S. L. Bidwell, S. J. Shallom, S. E. van
Aken, S. B. Riedmuller, T. V. Feldblyum, J. K. Cho, J. Quackenbush, M.
Sedegah, A. Shoaibi, L. M. Cummings, L. Florens, J. R. Yates, J. D. Raine,
R. E. Sinden, M. A. Harris, D. A. Cunningham, P. R. Preiser, L. W. Bergman,
A. B. Vaidya, L. H. van Lin, C. J. Janse, A. P. Waters, H. O. Smith, O. R.
White, S. L. Salzberg, J. C. Venter, C. M. Fraser, S. L. Hoffman, M. J. Gard-
Cell-based drug inhibition assays
LDH activity assay: Initial screens to test the activities of the com-
pounds on 3D7 P. falciparum cultures were performed through the
LDH activity assay, as previously described.[68] Smears were also
prepared for each drug assay to confirm the absorbance results
visually. For each tested compound, LDH activity was measured
both at 48 and at 96 h in order to check for delayed effects. Mupir-
ocin[24] and borrelidin[25] were used as positive controls of inhibi-
tion.[23,24,68]
[4] M. J. Gardner, N. Hall, E. Fung, O. White, M. Berriman, R. W. Hyman, J. M.
Carlton, A. Pain, K. E. Nelson, S. Bowman, I. T. Paulsen, K. James, J. A.
Eisen, K. Rutherford, S. L. Salzberg, A. Craig, S. Kyes, M. S. Chan, V. Nene,
S. J. Shallom, B. Suh, J. Peterson, S. Angiuoli, M. Pertea, J. Allen, J. Selen-
gut, D. Haft, M. W. Mather, A. B. Vaidya, D. M. Martin, A. H. Fairlamb,
M. J. Fraunholz, D. S. Roos, S. A. Ralph, G. I. McFadden, L. M. Cummings,
G. M. Subramanian, C. Mungall, J. C. Venter, D. J. Carucci, S. L. Hoffman,
[5] M. J. Gardner, S. J. Shallom, J. M. Carlton, S. L. Salzberg, V. Nene, A.
Shoaibi, A. Ciecko, J. Lynn, M. Rizzo, B. Weaver, B. Jarrahi, M. Brenner, B.
Parvizi, L. Tallon, A. Moazzez, D. Granger, C. Fujii, C. Hansen, J. Pederson,
T. Feldblyum, J. Peterson, B. Suh, S. Angiuoli, M. Pertea, J. Allen, J. Selen-
gut, O. White, L. M. Cummings, H. O. Smith, M. D. Adams, J. C. Venter,
[6] N. Hall, A. Pain, M. Berriman, C. Churcher, B. Harris, D. Harris, K. Mungall,
S. Bowman, R. Atkin, S. Baker, A. Barron, K. Brooks, C. O. Buckee, C. Bur-
rows, I. Cherevach, C. Chillingworth, T. Chillingworth, Z. Christodoulou,
L. Clark, R. Clark, C. Corton, A. Cronin, R. Davies, P. Davis, P. Dear, F. Dear-
den, J. Doggett, T. Feltwell, A. Goble, I. Goodhead, R. Gwilliam, N.
Hamlin, Z. Hance, D. Harper, H. Hauser, T. Hornsby, S. Holroyd, P. Hor-
rocks, S. Humphray, K. Jagels, K. D. James, D. Johnson, A. Kerhornou, A.
Knights, B. Konfortov, S. Kyes, N. Larke, D. Lawson, N. Lennard, A. Line,
M. Maddison, J. McLean, P. Mooney, S. Moule, L. Murphy, K. Oliver, D.
Ormond, C. Price, M. A. Quail, E. Rabbinowitsch, M. A. Rajandream, S.
Rutter, K. M. Rutherford, M. Sanders, M. Simmonds, K. Seeger, S. Sharp,
R. Smith, R. Squares, S. Squares, K. Stevens, K. Taylor, A. Tivey, L. Unwin,
S. Whitehead, J. Woodward, J. E. Sulston, A. Craig, C. Newbold, B. G. Bar-
[7] R. W. Hyman, E. Fung, A. Conway, O. Kurdi, J. Mao, M. Miranda, B.
[8] E. Lasonder, Y. Ishihama, J. S. Andersen, A. M. Vermunt, A. Pain, R. W.
Sauerwein, W. M. Eling, N. Hall, A. P. Waters, H. G. Stunnenberg, M.
[9] L. Florens, M. P. Washburn, J. D. Raine, R. M. Anthony, M. Grainger, J. D.
Haynes, J. K. Moch, N. Muster, J. B. Sacci, D. L. Tabb, A. A. Witney, D. Wol-
ters, Y. Wu, M. J. Gardner, A. A. Holder, R. E. Sinden, J. R. Yates, D. J. Car-
[11] B. J. Foth, S. A. Ralph, C. J. Tonkin, N. S. Struck, M. Fraunholz, D. S. Roos,
Fluorescence-assisted cell sorting (FACS): FACS was used to calculate
the IC50 values of the most active compounds on 3D7 P. falciparum
cultures. For FACS analysis, Syto-11 was used to discriminate parasi-
tized from nonparasitized red blood cells (RBCs). Each sample was
diluted at 1:100 in phosphate-buffered saline (PBS), and Syto-11 in
DMSO (0.5 mm) was added to a final concentration of 0.5 mm. Sam-
ples were excited at 488 nm and analyzed by using an FC500 flow
cytometer. Inhibition rates were measured at several concentra-
tions of the tested compounds. GraphPad Prism version 5.0 (Graph-
Pad Software, San Diego, California, USA) was used to fit the mea-
sured inhibitory activities of the compounds to dose-response
curves and to infer their corresponding IC50 values both at 48 h
and at 96 h after drug treatment.
Subcellular localization of PfKRS-2 by immunofluorescence: Api-
coplastic subcellular localization of PfKRS-2 was predicted with the
aid of different algorithms, including PlasmoAP,[11] PATS,[69] Plas-
Mit,[70] PSORT,[71] and SignalP.[72] To validate these predictions experi-
mentally, the PfKRS-2 leader sequence was inserted into the XhoI/
XmaI digested pGlux.1 vector[73] (a kind gift from Alan Cowman), to
generate a C-terminal GFP fusion to the N-terminal region of
PfKRS-2 that contains the predicted apicoplastic localization signal
of the protein.[11] Synchronized cultures of P. falciparum 3D7A were
electroporated and transfected with the PfKRS-2leader-GFP-contain-
ing vector. After 24 h of growth, WR99210 was added to a final
concentration of 10 nm to select for transfected parasites.[73] RBCs
containing transfected parasites expressing PfKRS-2-GFP were
washed and fixed for 5 min in methanol/acetone (90:10) and incu-
bated with anti-ACP primary antibody (kindly provided by Dr.
Geoff McFadden), which was used to check for colocalization in
the apicoplast. Anti-ACP antibodies were detected with a secondary
fluorescent antibody (AlexaFluor 555 mouse anti-rabbit, Invitro-
gen). The samples were mounted with Mowiol (Calbiochem, Merck
Chemicals), and analyzed with a Leica SP2 confocal microscope.
[12] R. F. Waller, G. I. McFadden, Curr. Issues Mol. Biol. 2005, 7, 57.
[14] M. E. Fichera, D. S. Roos, Nature 1997, 390, 407.
Acknowledgements
[17] E. L. Dahl, J. L. Shock, B. R. Shenai, J. Gut, J. L. DeRisi, P. J. Rosenthal, An-
[19] T. N. Ramya, S. Mishra, K. Karmodiya, N. Surolia, A. Surolia, Antimicrob.
This work was supported by the EU FP7 grant HEALTH-F3-2009-
223024–Mephitis, and by grants BIO2009-09776 (to L.R.d.P.) and
CTQ2008-00177 and SAF2011-30508-C02-01 (to M.R.) from the
Spanish Ministry of Education and Science. E.M.N. is supported
by a La Caixa/IRB International Ph.D. Program Fellowship. R.H.,
A.L., L.C., and N.C. were supported by the EU FP7 project grant.
[20] A. B. Sidhu, Q. Sun, L. J. Nkrumah, M. W. Dunne, J. C. Sacchettini, D. A.
Fidock, J. Biol. Chem. 2007, 282, 2494.
Keywords: aminoacyl-tRNA synthetases
·
combinatorial
chemistry · drug design · enzyme inhibitors · malaria ·
molecular modeling
[21] S. Kim, S. W. Lee, E. C. Choi, S. Y. Choi, Appl. Microbiol. Biotechnol. 2003,
61, 278.
[23] A. Ishiyama, M. Iwatsuki, M. Namatame, A. Nishihara-Tsukashima, T.
[24] E. S. Istvan, N. V. Dharia, S. E. Bopp, I. Gluzman, E. A. Winzeler, D. E. Gold-
report_2010/en/index.html.
ꢃ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ChemBioChem 2013, 14, 499 – 509 508