Maddani and Prabhu
JOCArticle
SCHEME 8. Proposed Mechanism for the Formation of
Imidazole Derivative
1,1-Diethyl-3-(furan-2-ylmethyl)thiourea (1d). Prepared as des-
cribed in general procedure. Rf (20% EtOAc/hexane) 0.25; yellow
liquid; yield 40%; IR (neat, cm-1) 1531, 3309; 1H NMR (CDCl3,
400 MHz) δ 1.23 (t, 3H, J = 7.2 Hz), 3.69 (q, 4H, J = 7.2 Hz), 4.87
(d, 6H, J = 4.8 Hz), 5.60 (br, 1H), 6.29-6.30 (m, 1H), 6.30-6.35
(m, 1H), 7.37-7.38 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ 12.6,
42.9, 45.2, 107.8, 110.4, 142.2, 151.2, 180.1; HRESI-MS (m/z) calcd
for C10H16N2OS (M þ H) 213.1061, found (M þ H) 213.1063.
N-Hexylpiperidine-1-carbothioamide (2a). Prepared as des-
cribed in general procedure. Rf (10% EtOAc/hexane) 0.15; brown
1
viscous liquid; yield 84%; IR (neat, cm-1) 1537, 3294; H NMR
(CDCl3, 300 MHz) δ 0.89 (t, 3H, J = 5.8 Hz), 1.24-1.35 (m, 6H),
1.55-1.65 (m, 8H), 3.60-3.66 (m, 2H), 3.78-3.80 (m, 4H), 5.74
(br, 1H); 13C NMR (CDCl3, 75 MHz) δ 13.7, 22.3, 24.0, 25.2, 26.3,
29.1, 31.2, 46.0, 48.5, 180.6; HRESI-MS (m/z) calcd for C12H24N2S
(M þ Na) 251.1558, found (M þ Na) 251.1558.
N-(2-Phenylethyl)piperidine-1-carbothioamide (2b).19 Prepared
as described in general procedure. Rf (20% EtOAc/hexane) 0.25;
colorless solid; yield 82%; mp 90-94 °C; IR (neat, cm-1) 1533,
3303; 1H NMR (CDCl3, 400 MHz) δ 1.53-1.69 (m, 6H), 2.95 (t,
2H, J = 7.0 Hz), 3.68 (t, 4H, J = 5.4 Hz), 3.90-3.96 (m, 2H), 5.48
(br, 1H), 7.20-7.34 (m, 5H); 13C NMR (CDCl3, 100 MHz) δ 24.2,
25.3, 35.2, 46.8, 48.6, 126.5, 128.6, 128.8, 138.9, 180.9; HRESI-MS
(m/z) calcd for C14H20N2S (M þ Na) 271.1245, found (M þ Na)
271.1241.
smoothly with aliphatic primary amines to afford various
di and tri substituted thiourea derivatives. Unlike earlier,
present method is not successful in synthesizing amino acid
derivativatized thioureas, indicating that molybdenum xan-
thate is a useful reagent in synthesizing such class of chiral
thiourea derivatives. The present method also allows the
synthesis of substituted 2-marcaptoimidazole compounds in
moderate yields.
N-(2-Phenylethyl)morpholine-4-carbothioamide (3b). Prepared as
described in general procedure. Rf (20% EtOAc/hexane) 0.10;
colorless solid; yield 75%; mp 75-78 °C; IR (KBr, cm-1) 1534,
1
3315; H NMR (CDCl3, 400 MHz) δ 2.95 (t, 2H, J = 6.8 Hz),
3.62-3.70 (m, 8H), 3.86-3.94 (m, 2H), 5.92 (br, 1H), 7.16-7.32
(m, 5H); 13C NMR (CDCl3, 100 MHz) δ 34.8, 46.7, 47.1, 65.8,
126.3, 128.4, 128.5, 138.6, 182.0; HRESI-MS (m/z) calcd for
C13H18N2OS (M þ Na) 273.1038, found (M þ Na) 273.1039.
N-(Furan-2-ylmethyl)morpholine-4-carbothioamide (3d). Pre-
pared as described in general procedure. Rf (20% EtOAc/
hexane) 0.10; brown solid; yield 68%; mp 86-89 °C; IR (neat,
cm-1) 1538, 3271; 1H NMR (CDCl3, 400 MHz) δ 3.70-3.80 (m,
8H), 4.87 (d, 2H, J = 3.2 Hz), 5.83 (br, 1H), 6.30-6.36 (m, 2H),
7.37 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ 42.9, 47.4, 66.0,
108.3, 110.5, 142.3, 150.6, 182.3; HRESI-MS (m/z) calcd for
C10H14N2O2S (M þ Na) 249.0674, found (M þ Na) 249.0675.
1,3-Dihexylthiourea (4a).20 Prepared as described in general
procedure. Rf (20% EtOAc/hexane) 0.30; colorless solid; yield 90%;
mp 35-39 °C; IR (neat, cm-1) 1555, 3260; 1H NMR (CDCl3, 300
MHz) δ 0.89 (t, 6H, J = 6.6 Hz), 1.25-1.40 (m, 12H), 1.55-1.64
(m, 4H), 3.42(br, 4H), 6.25(br, 2H);13CNMR(CDCl3, 75MHz) δ
13.8, 22.3, 26.4, 28.8, 31.3, 44.3, 181.2; HRESI-MS (m/z) calcd for
C13H28N2S (M þ Na) 267.1871, found (M þ Na) 267.1872.
1,3-Bis(furan-2-ylmethyl)thiourea (4d).21 Prepared as des-
cribed in general procedure. Rf (25% EtOAc/hexane) 0.20; pale
brown solid; yield 65%; mp 68-73 °C; IR (neat, cm-1) 1548,
3271; 1H NMR (CDCl3, 400 MHz) δ 4.62 (d, 4H, J = 3.6 Hz),
6.24-6.26 (m, 2H), 6.30-6.32 (m, 2H), 6.58 (br, 2H), 7.32-7.34
(m, 2H); 13C NMR (CDCl3, 100 MHz) δ 41.4, 108.1, 110.5,
142.3, 150.1, 182.0; HRESI-MS (m/z) calcd for C11H12N2O2S
(M þ Na) 259.0517, found (M þ Na) 259.0515.
Experimental Section
General Experimental Procedure. To a well-stirred solution
of dialkylamine (1.4 mmol) in water was added sodium hydro-
xide (1.4 mmol) followed by carbon disulfide (1.5 mmol) at
room temperature, and stirring was continued for 1 h. To this
pale yellow colored suspension was added a primary amine
(1.0 mmol), and the mixture was heated to 100 °C until the
completion of reaction (monitored by TLC). The mixture was
cooled, acidified with dilute hydrochloric acid, and extracted
into CH2Cl2 (2 ꢀ 5 mL). The combined organic layer was dried
over sodium sulfate, and the solvent was removed completely.
The residue was purified by column chromatography on silica
gel to obtain thiourea derivative.
1,1-Diethyl-3-hexylthiourea (1a).13 Prepared as described in
general procedure. Rf (10% EtOAc/hexane) 0.20; pale brown
viscous liquid; yield 90%; IR (neat, cm-1) 1532, 3309; 1H NMR
(CDCl3, 300 MHz) δ 0.89 (t, 3H, J = 6.6 Hz), 1.23 (t, 6H, J =
7.2 Hz), 1.30-1.40 (m, 6H), 1.58 1.66 (m, 2H), 3.61-3.69 (m,
6H), 5.36 (br, 1H); 13C NMR (CDCl3, 75 MHz) δ 12.6, 13.9,
22.5, 26.6, 29.3, 31.4, 44.9, 46.1, 180.0; HRESI-MS (m/z) calcd
for C11H24N2S (M þ Na) 239.1558, found (M þ Na) 239.1559.
1,1-Diethyl-3-(2-phenylethyl)thiourea (1b).18 Prepared as de-
scribed in general procedure. Rf (20% EtOAc/hexane) 0.25;
colorless solid; yield 84%; mp 67-69 °C; IR (neat, cm-1) 1530,
3318; 1H NMR (CDCl3, 300 MHz) δ 1.09 (t, 6H, J = 7.2 Hz),
2.96 (t, 2H, J = 6.6 Hz), 3.55 (q, 4H, J = 7.2 Hz), 3.85-3.96 (m,
2H), 5.28 (br, 1H), 7.21-7.34 (m, 5H); 13C NMR (CDCl3, 75
MHz) δ 12.4, 35.1, 44.9, 46.6, 126.6, 128.7, 128.8, 138.9, 180.1;
HRESI-MS (m/z) calcd for C13H20N2S (M þ Na) 259.1245,
found (M þ Na) 259.1244.
1,3-Bis(phenylmethyl)thiourea (4e).22 Prepared as described in
general procedure. Rf (25% EtOAc/hexane) 0.20; cream solid;
(19) (a) Cho, J. K; White, P. D.; Klute, W.; Dean, T. W.; Bradley, M.
Chem. Commun. 2004, 502–503. (b) Mohanta, P. K.; Dhar, S.; Samal, S. K.;
Ila, H.; Junjappa, H. Tetrahedron 2000, 56, 629–637. (c) Tisler, M. Croat.
Chem. Acta 1957, 29, 409–411.
(20) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.; Cowley,
A. R.; Szemes, F.; Drew, M. G. B. J. Am. Chem. Soc. 2005, 127, 2292–2302.
(21) McKay, A. F.; Garmaise, D. L.; Baker, H. A.; Hawkins, L. R.; Falta,
V.; Gaudry, R.; Paris, G. Y. J. Med. Chem. 1963, 6, 587–595.
(22) Hisaki, I.; Sasaki, S.; Hirose, K.; Tobe, Y. Eur. J. Org. Chem. 2007,
607–615.
(18) Vassilev, G. N. Dokl. Bulg. Akad. Nauk. 1995, 48, 51–54.
J. Org. Chem. Vol. 75, No. 7, 2010 2331