3244
Y. Jing et al. / Tetrahedron Letters 51 (2010) 3242–3245
HO HO
O
O
O
O
Promestriene
Quinestrol
Figure 1. 3-Etherified estrogenic drugs.
Mestranol
References and notes
O
O
O
1. (a) Windholz, T. B.; Windholz, M. Angew. Chem., Int. Ed. Engl. 1964, 3, 353; (b)
Morand, P.; Lyall, J. Chem. Rev. 1968, 68, 85.
2. (a) Chun, T. Y.; Gregg, D.; Sarkar, D. K.; Gorski, J. Proc. Natl. Acad. Sci. 1998, 95,
2325; (b) Hess, R. A.; Bunick, D.; Lee, K. H.; Bahr, J.; Taylor, J. A.; Korach, K. S.;
Lubahn, D. B. Nature 1997, 390, 509.
3. (a) Lupon, P.; Gomez, J.; Bonet, J. J. Angew. Chem., Int. Ed. Engl. 1983, 22, 711; (b)
Kiesewetter, D. O.; Katzenellenbogen, J. A.; Kilbourn, M. R.; Welch, M. J. J. Org.
Chem. 1984, 49, 4900; (c) Tietze, L. F.; Schneider, G.; Wolfling, J.; Nobel, T.;
Wulff, C.; Schubert, I.; Rubeling, A. Angew. Chem., Int. Ed. 1998, 37, 2469; (d)
Purohit, A.; Wyatt, J.; Hynd, G.; Wright, J.; El-Shafey, A.; Swamy, N.; Ray, R.;
Jones, G. B. Tetrahedron Lett. 2001, 42, 8579; (e) Labaree, D. C.; Zhang, J. X.;
Harris, H. A.; O’Connor, C.; Reynolds, T. Y.; Hochberg, R. B. J. Med. Chem. 2003,
46, 1886; (f) Saeed, M.; Zahid, M.; Rogan, E.; Cavalieri, E. Steroids 2005, 70, 173;
(g) Schon, U.; Messinger, J.; Buchholz, M.; Reinecker, U.; Thole, H.; Prabhu, M. K.
S.; Konda, A. Tetrahedron Lett. 2005, 46, 7111; (h) Liu, Y.; Kim, B.; Taylor, S. D. J.
Org. Chem. 2007, 72, 8824.
O
HC(OR)3
TsOH,ROH
RO
O
H
6a-c
2h
82-85%
RO
8
7
Scheme 3. Proposed retro-ene mechanism.
Table 3
Synthesis of 3-etherified estrogensa
O
O
4. (a) Hershberg, E. B.; Rubin, M.; Schwenk, E. J. Org. Chem. 1950, 15, 292; (b)
Kaufmann, S.; Pataki, J.; Rosenkranz, G.; Romo, J.; Djerassi, C. J. Am. Chem. Soc.
1950, 72, 4531.
5. (a) Tsuda, K.; Ohki, E.; Nozoe, S.; Ikekawa, N. J. Org. Chem. 1961, 26, 2614; (b)
Dryden, H. L.; Webber, G. M.; Wieczorek, J. J. J. Am. Chem. Soc. 1964, 86, 742; (c)
French, A. N.; Wilson, S. R.; Welch, M. J.; Katzenellenbogen, J. A. Steroids 1993,
58, 157; (d) Bourke, D. G.; Collins, D. J.; Bannister, J. D.; Doherty, C. L.; Fallon, G.
D.; Lim, Y.; Ting, T. L. P.; Ward, B. R. Aust. J. Chem. 1998, 51, 353.
6. (a) Broka, C. A. J. Org. Chem. 1988, 53, 575; (b) Ehrenstein, M.; Otto, K. J. Org.
Chem. 1959, 24, 2006; (c) Templeton, J. F.; Lin, W. Y.; Ling, Y. Z.; Majgier-
AcO
(RO)3CH, TsOH
ROH
R
O
O
6a-c
2h
Entry
R
Solvent
Temp (°C)
Time (h)
Yieldb (%)
1
2
Me
Et
MeOH
EtOH
60
70
80
80
1
82
84
NR
85
Baranowska, H.; Marat, K. J. Chem. Soc., Perkin Trans.
1 1997, 2037; (d)
2.5
5
Numazawa, M.; Yamashita, K.; Kimura, N.; Takahashi, M. Steroids 2009, 74, 208.
7. Ueberwasser, H.; Heusler, K.; Kalvoda, J.; Meystre, C.; Wieland, P.; Anner, G.;
Wettstein, A. Helv. Chim. Acta 1963, 46, 344.
3
iPr
iPr
iPrOH
iPrOHb
4b
17
a
8. (a) Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153; (b) Zinczuk, J.;
Bacigaluppo, J. A.; Colombo, M. I.; Cravero, R. M.; Gonzalez-Sierra, M.; Ruveda,
E. A. J. Braz. Chem. Soc. 2003, 14, 970.
Conditions: substrate (200 mg, 0.58 mmol), orthoester (1 mL), solvent (3 mL),
TsOH (10 wt %).
b
TsOH (50 wt %).
9. General procedure for the preparation of 2h: (Warning: Most of the steroids are
biologically active. The materials, reaction, and its work-up should be handled
with special care!) A mixture of steroid 1h (7.90 g, 22.9 mmol) and DDQ
(6.25 g, 27.5 mmol) in dry dioxane (50 mL) was refluxed at 110 °C for 3 h. After
completion of the reaction (monitored with 1H NMR), the solvent was removed
under reduced pressure and the residue was dissolved in CH2Cl2 (100 mL). The
insoluble portion was removed by filtration and washed with CH2Cl2
(3Â20 mL). The combined filtrates were washed with aqueous NaHSO3 and
water, dried (MgSO4), filtered, and concentrated. The residue was filtered
through a short silica column to afford 6.90 g of crude 2h as a light brown oil.
Crude 2h (500 mg) was solved in 10 mL of CHCl3 and m-CPBA (85%, 140 mg,
0.70 mmol) was sequentially added to CHCl3 (10 mL). The solution was
vigorously stirred for 12 h at room temperature, upon which it was diluted
with CH2Cl2 (20 mL) and washed with Na2SO3 solution (20 mL), and brine
(20 mL). The organic layer was dried over Na2SO4, filtered, and evaporated. The
residue was purified by column chromatography to afford pure 2h (438 mg,
77% for two steps from 1h).
ether 6b in 84% yield (entry 2). However, bulky isopropyl orthofor-
mate did not react with dienone 2h with TsOH (10 wt %) as cata-
lyst. Fortunately, increasing the amount of TsOH to 50 wt %
accelerated the reaction and afforded the desired product 6c in
85% yield (entry 4). Rapid retro-ene aromatization resulted in no
observable formation of intermediates 7 and 8.
In summary, our study demonstrates that the acylation of 19-
hydroxyandrost-4-ene-3-ones significantly facilitated 1,2-dehy-
drogenation with DDQ as oxidant. The efficient dehydrogenation
in combination with subsequent retro-aldol-type aromatization
provides a practical protocol for the synthesis of estrogens from
easily available 19-hydroxyandrost-4-ene-3,17-dione 1a. Based
on the current protocol, pharmaceutically attractive estrogens
were efficiently synthesized. Further synthetic application is in
progress.
10. Wieland, P.; Anner, G. Helv. Chim. Acta 1968, 51, 1932.
11. (a) Rao, P. N.; Wang, Z. Q. Steroids 1997, 62, 487; (b) Li, H. Q.; Song, Y. X.; Peng,
X. F. Steroids 2008, 73, 488.
12. Agnello, E. J.; Laubach, G. D. J. Am. Chem. Soc. 1960, 82, 4293.
13. Direct oxidation of 1a formed a by-product, which can only be removed by
recrystallization and resulted in decrease of isolated yield (40–50%).
O
Acknowledgment
HO
chloranil
70-80% (NMR yield)
40-50% (isolated yield)
1a
We are grateful for financial support of this work by the Na-
tional Natural Science Foundation of China (No. 20902098).
O
14. Preparation of 6,7-dehydroestrone: According to the previous procedure, 300 mg
of 1a (1 mmol) provided crude acetyl ester 1h (390 mg), which was used
without further purification.
Supplementary data
The mixture of crude acetyl ester 1h (390 mg) and chloranil (417 mg,
1.70 mmol) in t-BuOH (10 mL) was refluxed for 2 h, then the solvent was
removed under reduced pressure and the residue was dissolved in MeOH
Supplementary data associated with this article can be found, in