Y. Qiu et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6164–6168
6167
TsCl
OH
OH
Bu4NF
OTs
THF
pyridine
75%
O
O
O
O
OH
F
O
O
21
23
22
(1) H+, THF / CH3OH
OH
OH
TsO
F
(2) TsCl, pyridine, CH2Cl2
24
OH
(Bu4N)3HP2O7
CH3CN
PPO
F
25
Figure 5. Organic synthesis of substrate analog (25).
5. (a) Iglesias, J.; Gonzalezpacanowska, D.; Marco, C.;
Garciaperegrin, E. Biochem. J. 1989, 260, 333; (b) Gon-
zalezpacanowska, D.; Marco, C.; Garciamartinez, J.;
Garciaperegrin, E. Biochim. Biophys. Acta 1985, 833,
449; (c) Jabalquinto, A. M.; Cardemil, E. Arch. Biochem.
Biophys. 1981, 210, 132; (d) Gonzalezpacanowska, D.;
Marco, C.; Garciamartinez, J.; Linares, A.; Garciapere-
grin, E. Nutr. Rep. Int. 1985, 31, 121; (e) Jabalquinto, A.
M.; Cardemil, E. Lipids 1980, 15, 196; (f) Gonza-
lezpacanowska, D.; Marco, C.; Garciamartinez, J.; Gar-
ciaperegrin, E. Biochim. Biophys. Acta 1986, 875, 605.
6. Bonanno, J. B.; Edo, C.; Eswar, N.; Pieper, U.; Roma-
nowski, M. J.; Ilyin, V.; Gerchman, S. E.; Kycia, H.;
Studier, F. W.; Sali, A.; Burley, S. K. Proc. Natl. Acad.
Sci. U.S.A. 2001, 98, 12896.
similar strategy to that for the synthesis of compound 4.
Difference is that we used the Grignard reaction here in-
stead of the Reformatsky reaction, since the reagents do
not have carboxylate ester functional group. Two equiv-
alents of Grignard reagent were used, with the first
equivalent reagent consumed by reacting with hydroxyl
group, which saved one protection and one deprotection
steps. The synthesis of compound 25 also followed a
similar strategy, which includes two stepwise SN2 reac-
tions on two sides of the molecule with some protection
and deprotection steps. These compounds were found to
be mild inhibitors of rat MDD as shown in Table 2, and
all are competitive with respect to mevalonate 5-diphos-
phate, suggesting that carboxyl group is relatively
important for the binding and reaction of the substrate.
7. Matte, A.; Tari, L. W.; Delbaere, L. T. J. Struct. Fold.
Des. 1998, 6, 413.
8. (a) Dhe-Paganon, S.; Magrath, J.; Abeles, R. H. Biochem-
istry 1994, 33, 13355; (b) Vlattas, I.; Dellureficio, J.; Ku,
E.; Bohacek, R.; Zhang, X. Bioorg. Med. Chem. Lett.
1996, 6, 2091; (c) Qiu, Y.; Li, D. Biochim. Biophys. Acta
2006, 1760, 1080; (d) Qiu, Y.; Li, D. Org. Lett. 2006, 8,
1013.
9. (a) Potter, D.; Miziorko, H. M. J. Biol. Chem. 1997, 272,
25449; (b) Fu, Z.; Wang, M.; Potter, D.; Miziorko, H. M.;
Kim, J. J. J. Biol. Chem. 2002, 277, 18134.
In summary, MDD is an essential enzyme in mevalonate
pathway regulating cholesterol biosynthesis. The en-
zyme was studied through incubation with various syn-
thetic substrate analogs and characterization of several
mutated enzymes. The results increased our understand-
ing of MDD and are potentially useful for developing
inhibitors that target the mevalonate pathway for treat-
ment of cardiovascular disease and cancer.
10. Krepkiy, D.; Miziorko, H. M. Protein Sci. 2004, 13, 1875.
11. Krepkiy, D.; Miziorko, H. M. Biochemistry 2005, 44,
2671.
Acknowledgment
12. The spectra data of 2,2-difluoromevaloate 5-diphosphate
(4) are shown as following: 1H NMR (300 MHz, D2O,
TMS) d 1.34 (s, 3H, CH3), 1.92–2.11 (m, 2H), 4.07–4.13
(m, 2H, POCH2); 31P NMR (121 MHz, D2O) d À1.03 (m).
13. The spectra data of 3-ethyl-2-fluoro-3,5-dihydroxy-pen-
tanate 5-diphosphate (8) are shown as following: 1H NMR
(300 MHz, D2O, TMS) d 0.95 (t, J = 7.5 Hz, 3H), 1.67 (m,
2H), 2.02 (m, 2H), 4.10 (q, 2H), 4.78 (m, 1H, partially
mixed with solvent signals); 31P NMR (121 MHz, D2O). d
À7.71 (d, J = 18.3 Hz), À3.54 (d, J = 19.0 Hz).
The work described in this paper was substantially sup-
ported by a grant from the City University of Hong
Kong (Strategic Research Grant, Project No. 7001793).
References and notes
14. (a) The spectra data of 3-hydroxy-3-methyl-butanyl pyro-
phosphate (17) are shown as following: 1H NMR
(300 MHz, D2O, TMS) d 1.28 (s, 6H, 2CH3), 1.92 (t,
J = 7.2 Hz, 2H, CH2C), 4.04–4.11 (m, 2 H, OCH2); 31P
NMR (121 MHz, D2O) d À6.30 (d, J = 17.0 Hz), À5.90
(d, 17.5 Hz). (b) The spectra data of 3-hydroxy-3-methyl-
1. (a) Goldstein, J. L.; Brown, M. S. Nature 1990, 343, 425;
(b) Houten, S. M.; Schneiders, M. S.; Wanders, R. J. A.;
Waterham, H. R. J. Biol. Chem. 2003, 278, 5736; (c) Kaur,
M.; Kaul, D. FASEB J. 1997, 11, A1217.
2. (a) Brown, M. S.; Goldstein, J. L. Science 1986, 232, 34;
(b) Ma, P. T. S.; Gil, G.; Sudhof, T. C.; Bilheimer, D. W.;
Goldstein, J. L.; Brown, M. S. Proc. Natl. Acad. Sci.
U.S.A. 1986, 83, 8370.
3. Schafer, W. R.; Kim, R.; Sterne, R.; Thorner, J.; Kim, S.
H.; Rine, J. Science 1989, 245, 379.
4. Quistad, G. B.; Cerf, D. C.; Schooley, D. A.; Staal, G. B.
Nature 1981, 289, 176.
1
pentanyl pyrophosphate (18) are shown as following: H
NMR (300 MHz, D2O) d 0.83 (t, 7.2 Hz, 3H, CH2CH3),
1.14 (s, 3H, CH3), 1.48 (q, J = 7.5 Hz, 2H, CH2CH3), 1.82
(t, J = 6.8 Hz, 2H, CH2C), 3.98 (q, J = 7.2 Hz, 2H,
OCH2); 13C NMR (75 MHz, D2O) d 8.1, 25.8, 34.2,
40.6, 63.1, 73.3; 31P NMR (121 MHz, D2O) d À6.10 (d,