Organic Letters
Letter
Ed. 2012, 51, 12542−12545. (c) Liu, J.; Liang, B.; Shu, D.; Yang, Z.;
Lei, A. Alkoxycarbonylation of aryl iodides catalyzed by Pd with a
thiourea type ligand under balloon pressure of CO. Tetrahedron 2008,
64, 9581−9584.
developed in the present work may find useful applications in
the late-stage installation of ester functionalities, which also
serves a complement to the known methods.
(5) Sargent, B. T.; Alexanian, E. J. Palladium-Catalyzed Alkox-
ycarbonylation of Unactivated Secondary Alkyl Bromides at Low
Pressure. J. Am. Chem. Soc. 2016, 138, 7520−7523.
ASSOCIATED CONTENT
* Supporting Information
■
S
(6) McMahon, C. M.; Renn, M. S.; Alexanian, E. J. Manganese-
Catalyzed Carboacylations of Alkenes with Alkyl Iodides. Org. Lett.
2016, 18, 4148−4150.
(7) Sargent, B. T.; Alexanian, E. J. Cobalt-Catalyzed Carbonylative
Cross-Coupling of Alkyl Tosylates and Dienes: Stereospecific
Synthesis of Dienones at Low Pressure. J. Am. Chem. Soc. 2017,
139, 12438−12440.
The Supporting Information is available free of charge on the
Detailed experimental procedures and characterization
(8) (a) Cheng, L.-J.; Mankad, N. P. Cu-Catalyzed Hydro-
carbonylative C−C Coupling of Terminal Alkynes with Alkyl Iodides.
J. Am. Chem. Soc. 2017, 139, 10200−10203. (b) Cheng, L.-J.; Islam, S.
M.; Mankad, N. P. Synthesis of Allylic Alcohols via Cu-Catalyzed
Hydrocarbonylative Coupling of Alkynes with Alkyl Halides. J. Am.
Chem. Soc. 2018, 140, 1159−1164. (c) Cheng, L.-J.; Mankad, N. P.
Copper-Catalyzed Borocarbonylative Coupling of Internal Alkynes
with Unactivated Alkyl Halides: Modular Synthesis of Tetrasub-
stituted β-Borylenones. Angew. Chem., Int. Ed. 2018, 57, 10328−
10332. (d) Pye, D. R.; Cheng, L.-J.; Mankad, N. P. Cu/Mn Bimetallic
Catalysis Enables Carbonylative Suzuki−Miyaura Coupling with
Unactivated Alkyl Electrophiles. Chem. Sci. 2017, 8, 4750−4755.
(e) Zhao, S.; Mankad, N. P. Cu-Catalyzed Hydroxymethylation of
Unactivated Alkyl Iodides with CO to Provide One-Carbon-Extended
Alcohols. Angew. Chem., Int. Ed. 2018, 57, 5867−5972.
(9) (a) Li, Y.; Dong, K.; Zhu, F.; Wang, Z.; Wu, X.-F. Copper-
Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.
Angew. Chem., Int. Ed. 2016, 55, 7227−7230. (b) Li, Y.; Wang, C.;
Zhu, F.; Wang, Z.; Dixneuf, P. H.; Wu, X.-F. Copper-Catalyzed
Alkoxycarbonylation of Alkanes with Alcohols. ChemSusChem 2017,
10, 1341−1345.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Financial support was provided by the Chinese NSF (Nos.
21871173 and 21572127).
■
REFERENCES
■
(1) Selected reviews on carbonylation reaction of alkyl halide:
(a) Ryu, I.; Sonoda, N.; Curran, D. P. Tandem Radical Reactions of
Carbon Monoxide, Isonitriles, and Other Reagent Equivalents of the
Geminal Radical Acceptor/Radical Precursor Synthon. Chem. Rev.
1996, 96, 177−194. (b) Ryu, I.; Sonoda, N. Free-Radical Carbon-
ylations: Then and Now. Angew. Chem., Int. Ed. Engl. 1996, 35, 1050−
1066. (c) Ryu, I. Radical Carboxylations of Iodoalkanes and Saturated
Alcohols Using Carbon Monoxide. Chem. Soc. Rev. 2001, 30, 16−25.
(d) Frisch, A. C.; Beller, M. Catalysts for Cross-Coupling Reactions
with Non-activated Alkyl Halides. Angew. Chem., Int. Ed. 2005, 44,
674−688. (e) Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.; Beller, M.; Wu,
X.-F. Palladium-Catalyzed Carbonylative Transformation of C(sp3)−
X Bonds. ACS Catal. 2014, 4, 2977−2989. (f) Sumino, S.; Fusano, A.;
Fukuyama, T.; Ryu, I. Carbonylation Reactions of Alkyl Iodides
through the Interplay of Carbon Radicals and Pd Catalysts. Acc. Chem.
Res. 2014, 47, 1563−1574. (g) Li, Y.; Hu, Y.; Wu, X.-F. Non-noble
Metal-catalysed Carbonylative Transformations. Chem. Soc. Rev. 2018,
47, 172−194.
(2) (a) Kondo, T.; Tsuji, Y.; Watanabe, Y. Photochemical
Carbonylation of Alkyl Iodides in the Presence of Various Metal
Carbonyls. Tetrahedron Lett. 1988, 29, 3833−3836. (b) Nagahara, K.;
Ryu, I.; Komatsu, M.; Sonoda, N. Radical Carboxylation: Ester
Synthesis from Alkyl Iodides, Carbon Monoxide, and Alcohols under
Irradiation Conditions. J. Am. Chem. Soc. 1997, 119, 5465−5466.
(c) Tsunoi, S.; Ryu, I.; Okuda, T.; Tanaka, M.; Komatsu, M.; Sonoda,
N. New Strategies in Carbonylation Chemistry: The Synthesis of δ-
Lactones from Saturated Alcohols and CO. J. Am. Chem. Soc. 1998,
120, 8692−8701.
(10) Xe-irradiation−carbonylation at 45 atm: Fukuyama, T.;
Nishitani, S.; Inouye, T.; Morimoto, K.; Ryu, I. Effective Acceleration
of Atom Transfer Carbonylation of Alkyl Iodides by Metal
Complexes. Application to the Synthesis of the Hinokinin Precursor
and Dihydrocapsaicin. Org. Lett. 2006, 8, 1383−1386.
(11) Formation of alkyl-InX2 under Cu-mediated conditions: Kim,
S.; Kim, C.-E.; Seo, B.; Lee, P. H. In Situ Generation of Phosphoryl
Alkylindiums and Their Synthetic Application to Arylalkyl Phospho-
nates via Palladium-Catalyzed Cross-Coupling Reactions. Org. Lett.
2014, 16, 5552−5555.
(13) The reaction may involve possible reduction of Cu(I) to Cu(0)
red
red
(E1/2 = + 0.52 V vs SCE in water) by In(I) (E1/2 = −0.41 V vs
red
SCE in water) or In(0) (E1/2 = −0.14 V vs SEC in water), which
may account for the incompetence of In(III).
(14) In-induced alkyl radical formation often requires water as the
solvent. For reviews, see: (a) Miyabe, H.; Naito, T. The Utility of
Indium in Aqueous Medium Radical Reactions. Org. Biomol. Chem.
2004, 2, 1267−1270. (b) Loh, T.-P.; Chua, G.-L. Discovery of Indium
Complexes as Water-Tolerant Lewis acids. Chem. Commun. 2006,
́
2739−2749. (c) Auge, J.; Lubin-Germain, N.; Uziel, J. Recent
Advances in Indium-Promoted Organic Reactions. Synthesis 2007,
2007, 1739.
(15) (a) Miyabe, H.; Ueda, M.; Nishimura, A.; Naito, T. Indium-
Mediated Intermolecular Alkyl Radical Addition to Electron-Deficient
C = N Bond and C = C Bond in Wate. Org. Lett. 2002, 4, 131−134.
(b) Yanada, R.; Nishimori, N.; Matsumura, A.; Fujii, N.; Takemoto,
Y. Indium-Mediated Atom-Transfer Cyclizations and Reductive
Cyclizations. Tetrahedron Lett. 2002, 43, 4585−4588. (c) Bhatti, N.
H.; Salter, M. M. A Novel Atom-Transfer Cyclisation Catalysed by
Indium Metal in Halogenated Solvents. Tetrahedron Lett. 2004, 45,
8379−8382. (d) Cao, L.; Shen, M.; Li, C. Indium-Mediated Alkyl
Radical Addition to (η6-Arene) tricarbonylmanganese Complexes in
Aqueous Media. Organometallics 2005, 24, 5983−5988. (e) Shen, Z.-
(3) Adamantyl bromide as the only viable example of tertiary alkyl
halides ester formation has been reported using Co-catalysis,
mediated by InCl3 mediated at 1 atm of CO under UV irradiation;
see: Cash, D.; Combs, A.; Dragojlovic, V. Cobalt-catalyzed Photolytic
Methoxycarbonylation of Bromoalkanes in the Presence of a Lewis
Acid. Tetrahedron Lett. 2004, 45, 1143−1145.
(4) (a) Zhao, Y.; Jin, L.; Li, P.; Lei, A. Palladium-Catalyzed
Oxidative Carbonylation of Alkyl and Aryl Indium Reagents with CO
under Mild Conditions. J. Am. Chem. Soc. 2008, 130, 9429−9433.
(b) Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Transition-
Metal-Free Alkoxycarbonylation of Aryl Halides. Angew. Chem., Int.
D
Org. Lett. XXXX, XXX, XXX−XXX