10.1002/anie.202002271
Angewandte Chemie International Edition
COMMUNICATION
[18] L. Huang, L. K. G. Ackerman, K. Kang, A. M. Parsons, D. J. Weix, J. Am.
Chem. Soc. 2019, 141, 10978–10983.
[19] We have observed significant amount of dihydropyridine byproduct from
crude NMR. The structure is consistent with our previous observed
byproduct (see ref. 11a), and the structure was assigned to be:
[11] For reductive cross-electrophile couplings of alkyl pyridinium salts with aryl
electrophiles, see: a) J. Liao, C. H. Basch, M. E. Hoerrner, M. R. Talley,
B. P. Boscoe, J. W. Tucker, M. R. Garnsey, M. P. Watson, Org. Lett.
2019, 21, 2941–2946. b) R. Martin-Montero, V. R. Yatham, H. Yin, J.
Davies, R. Martin, Org. Lett. 2019, 21, 2947–2951. c) J. Yi, S. O. Badir,
L. M. Kammer, M. Ribagorda, G. A. Molander, Org. Lett. 2019, 21,
3346–3351. d) H. Yue, C. Zhu, L. Shen, Q. Geng, K. J. Hock, T. Yuan, L.
Cavallo, M. Rueping, Chem. Sci. 2019, 10, 4430–4435. e) S. Ni, C. X. Li,
Y. Mao, J. Han, Y. Wang, H. Yan, Y. Pan, Sci. Adv. 2019, 5, DOI
10.1126/sciadv.aaw9516.
[20] Tertiary carbinamines cannot be converted into 2,4,6-triphenylpyridinium
salts, except for cyclopropyl examples, presumably due to steric
hindrance between the tertiary alkyl group and 2,6-phenyl groups.
[21] At this time, reference [6] contains a more general, higher yielding route to
aryl alkyl ketones from aryl carboxylic acids and amines.
[22] A search of the REAXYS database for HO2CCH2OR found 22844
substances with pharmacological data. This includes pesticides such as
2,4-dichlorophenoxyacetic acid (2,4-D) and fluroxypyr as well as drugs
such as treprostinil, aceclofenac, cefixime, cetirizine, and rifamycin B.
[23] a) K. Nakajima, S. Nojima, Y. Nishibayashi, Angew. Chem., Int. Ed. 2016,
55, 14106-14110. b) S. O. Badir, A. Dumoulin, J. K. Matsui, G. A.
Molander, Angew. Chem. Int. Ed. 2018, 57, 6610–6613. c) E. Gandolfo,
X. Tang, S. Raha Roy, P. Melchiorre, Angew. Chem. Int. Ed. 2019, 58,
16854–16858. d) X. Zhang, D. W. C. Macmillan, J. Am. Chem. Soc
2017, 139, 11353–11356. e) C. L. Joe, A. G. Doyle, Angew. Chem. Int.
Ed. 2016, 55, 4040–4043.
[ 12 ] Carbonylative methods are also known, although most require
a
pre-functionalized organometallic reagent. Carbonylative
cross-electrophile ketone syntheses are still relatively underdeveloped;
see: a) M. Oçafrain, M. Devaud, M. Troupel, J. Périchon, J. Chem. Soc.,
Chem. Commun. 1995, 2331-2332; b) E. Dolhem, M. Oçafrain, J. Y.
Nédélec, M. Troupel, Tetrahedron 1997, 53, 17089-17096; c) M.
Oçafrain, E. Dolhem, J. Nédélec, M. Troupel, J. Organomet. Chem.
1998, 571, 37-42; d) M. Oçafrain, M. Devaud, J. Y. Nédélec, M. Troupel,
J. Organomet. Chem. 1998, 560, 103-107; d) E. Dolhem, R. Barhdadi, J.
Folest, J. Nédélec, M. Troupel, Tetrahedron 2001, 57, 525-529; e) A. C.
Wotal, R. D. Ribson, D. J. Weix, Organometallics 2014, 33, 5874-5881;
f) R. Shi, X. Hu, Angew. Chem., Int. Ed. 2019, 58, 7454-7458;
Angew.Chem.2019,131,7532 –7536.
[24] a) H. Li, C. P. Breen, H. Seo, T. F. Jamison, Y.-Q. Fang, M. M. Bio, Org.
Lett. 2018, 20, 1338–1341. b) R. J. Perkins, A. J. Hughes, D. J. Weix, E.
C. Hansen, Org. Process Res. Dev. 2019, 23, 1746−1751. c) K.-J. Jiao,
D. Liu, H.-X. Ma, H. Qiu, P. Fang, T.-S. Mei, Angew. Chem. Int. Ed.
2019, DOI 10.1002/anie.201912753
[25] J. Liu, C. Lei, H. Gong, Sci. China. Chem, 2019, 62, 1492–1496.
[26] Alkyl-NH2: 1.26 million in Beilstein Database, 1.40 million listed in
eMolecules commercial availability database. Alkyl-Br: 308 thousand
in Beilstein, 201 thousand in eMolecules. See also an analysis of
substrate availability in the Supporting Information.
[13] Ketones have been synthesized using aldehydes as starting materials: a)
T. Ishii, Y. Kakeno, K. Nagao, H. Ohmiya, J. Am. Chem. Soc, 2019, 141,
45. b) Y. C. Huang, K. K. Majumdar, C. H. Cheng, J. Org. Chem. 2002,
67, 1682–1684. c) J. K. Vandavasi, X. Hua, H. Ben Halima, S. G.
Newman, Angew. Chem. Int. Ed. 2017, 56, 15441–15445. d) J. Ruan, O.
Saidi, J. A. Iggo, J. Xiao, J. Am. Chem. Soc. 2008, 130, 10510–10511.
e) S. Ko, B. Kang, S. Chang, Angew. Chem. Int. Ed. 2005, 44,
455–457.f) M. Pucheault, S. Darses, J. P. Genet, J. Am. Chem. Soc.
2004, 126, 15356–15357.
[14] S. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192-16197.
[15] The reduction potentials in Scheme 1 are from our own measurements and
the literature. See Supporting Information, reference [11b], and J.
Grimshaw, S. Moore, J. Trocha-Grimshaw. Acta Chem. Scan. B 1983,
37, 485-489
[16] For selected references, see: a) Y. Zhang, T. Rovis, J. Am. Chem. Soc.
2004, 126, 15964–15965. b) Y. Ogiwara, Y. Maegawa, D. Sakino, N.
Sakai, Chem. Lett. 2016, 45, 790–792. c) Y. Ogiwara, D. Sakino, Y.
Sakurai, N. Sakai, Eur. J. Org. Chem. 2017, 2017, 4324–4327. d) S. T.
Keaveney, F. Schoenebeck, Angew. Chem. Int. Ed. 2018, 57,
4073–4077. e) C. A. Malapit, J. R. Bour, C. E. Brigham, M. S. Sanford,
Nature 2018, 563, 100–104. f) C. A. Malapit, J. R. Bour, S. R. Laursen,
M. S. Sanford, J. Am. Chem. Soc. 2019, 141, 17322–17330. g) F.-F.
Pan, P. Guo, C.-L. Li, P. Su, X.-Z. Shu, Org. Lett. 2019, 21, 3701−3705.
h) Y. Ogiwara, N. Sakai, Angew. Chem. Int. Ed. 2020, 59, 574–594.
[17] a) N. A. Weires, E. L. Baker, N. K. Garg, Nat. Chem. 2016, 8, 75–79. b) T.
B. Boit, N. A. Weires, J. Kim, N. K. Garg, ACS Catal. 2018, 8,
1003–1008. c) G. Meng, M. Szostak, Org. Lett 2015, 17, 4364−4367. d)
A. H. Dardir, P. R. Melvin, R. M. Davis, N. Hazari, M. Mohadjer Beromi,
J. Org. Chem. 2018, 83, 469–477. e) A. Chatupheeraphat, H.-H. Liao, W.
Srimontree, L. Guo, Y. Minenkov, A. Poater, L. Cavallo, M. Rueping, J.
Am. Chem. Soc 2018, 140, 3724−3735. f) W. Shi, G. Zou, Molecules
2018, 23, 2412. g) G. Meng, M. Szostak, Org. Lett. 2018, 20,
6789–6793. h) J. Masson-Makdissi, J. K. Vandavasi, S. G. Newman,
Org. Lett. 2018, 20, 4094–4098. i) X. Liu, C.-C. Hsiao, L. Guo, M.
Rueping, Org. Lett. 2018, 20, 2976–2979.
This article is protected by copyright. All rights reserved.