Organic Letters
Letter
Last 2500 Years. Angew. Chem., Int. Ed. 2003, 42, 3582−3603.
2016, 18, 2479−2482. (c) Chachignon, H.; Scalacci, N.; Petricci, E.;
Castagnolo, D. Synthesis of 1,2,3-Substituted Pyrroles from
Propargylamines via a One-Pot Tandem Enyne Cross Metathesis-
Cyclization Reaction. J. Org. Chem. 2015, 80, 5287−5295. (d) Li, X.
D.; Chen, M.; Xie, X.; Sun, N.; Li, S.; Liu, Y. H. Synthesis of Multiple-
Substituted Pyrroles via Gold(I)-Catalyzed Hydroamination/Cycliza-
tion Cascade. Org. Lett. 2015, 17, 2984−2987. (e) Wu, X. D.; Li, K.;
Wang, S. S.; Liu, C.; Lei, A. W. Acid-Promoted Cross-Dehydrative
Aromatization for the Synthesis of Tetraaryl-Substituted Pyrroles. Org.
Lett. 2016, 18, 56−59. (f) Handy, S. T.; Sabatini, J. J. Regioselective
Dicouplings: Application to Differentially Substituted Pyrroles. Org.
Lett. 2006, 8, 1537−1539. (g) Banik, B. K.; Samajdar, S.; Banik, I.
Simple Synthesis of Substituted Pyrroles. J. Org. Chem. 2004, 69,
213−216. (h) Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Pd-
Catalyzed Oxidative Coupling of Enamides and Alkynes for Synthesis
of Substituted Pyrroles. Org. Lett. 2014, 16, 608−611. (i) Lourdusamy,
E.; Yao, L.; Park, C.-M. Stereoselective Synthesis of α-Diazo Oxime
Ethers and Their Application in the Synthesis of Highly Substituted
Pyrroles through a [3 + 2] Cycloaddition. Angew. Chem., Int. Ed.
2010, 49, 7963−7967. (j) Singh, K.; Vellakkaran, M.; Banerjee, D.
Nitrogen Ligated Nickel-Catalyst Enables Selective Intermolecular
Cyclisation of β- and γ-Amino Alcohols with Ketones: Access to Five
and Six-member N-Heterocycles. Green Chem. 2018, 20, 2250−2256.
(7) (a) Setsune, J.-I. 2,2′-Bipyrrole-Based Porphyrinoids. Chem. Rev.
2017, 117, 3044−3101. (b) Magnus, P.; Gallagher, T.; Schultz, J.; Or,
Y.-S.; Ananthanarayan, T. P. Studies on the Synthesis of the
Antitumor Agent CC-1065. Synthesis of the Unprotected Cyclo-
propapyrroloindole A Portion Using the 3,3′-Bipyrrole Strategy. J.
Am. Chem. Soc. 1987, 109, 2706−2711. (c) Wasserman, H. H.;
Rotello, V. M.; Frechette, R.; DeSimone, R. W.; Yoo, J. U.; Baldino,
C. M. Singlet Oxygen in Synthesis Formation of d,l- and meso-
Isochrysohermidin from a 3,3′-Bipyrrole Precursor. Tetrahedron 1997,
53, 8731−8738. (d) Jolicoeur, B.; Lubell, W. D. 4-Alkoxy- and 4-
Amino-2,2′-bipyrrole Synthesis. Org. Lett. 2006, 8, 6107−6110.
(8) (a) Nakamura, K.; Yasuda, N.; Maeda, H. Dimension-Controlled
Assemblies of Modified Bipyrroles Stabilized by Electron-With-
drawing Moieties. Chem. Commun. 2016, 52, 7157−7160.
(b) Hong, T.; Song, H. l.; Li, X.; Zhang, W. B.; Xie, Y. S. Syntheses
of Mono- and Diacylated Bipyrroles with Rich Substitution Modes
and Development of a Prodigiosin Derivative as a Fluorescent Zn(II)
Probe. RSC Adv. 2014, 4, 6133−6140. (c) Kaschel, J.; Schneider, T.
F.; Kratzert, D.; Stalke, D.; Werz, D. B. Domino Reactions of Donor−
Acceptor-Substituted Cyclopropanes for the Synthesis of 3,3′-Linked
Oligopyrroles and Pyrrolo[3,2-e]indoles. Angew. Chem., Int. Ed. 2012,
51, 11153−11156.
(9) (a) Wang, Z.; Song, F.; Zhao, Y.; Huang, Y.; Yang, L.; Zhao, D.;
Lan, J.; You, J. Elements of Regiocontrol in the Direct Heteroarylation
of Indoles/Pyrroles: Synthesis of Bi- and Fused Polycyclic
Heteroarenes by Twofold or Tandem Fourfold CH Activation.
Chem. - Eur. J. 2012, 18, 16616−16620. (b) Li, Y.; Wang, W.-H.;
Yang, S.-D.; Li, B.-J.; Feng, C.; Shi, Z.-J. Oxidative Dimerization of N-
Protected and Free Indole Derivatives toward 3,3′-Biindoles via Pd-
Catalyzed Direct C−H Transformations. Chem. Commun. 2010, 46,
4553−4555. (c) Lei, S.; Cao, H.; Chen, L. B.; Liu, J. Y.; Cai, H. Y.;
Tan, J. W. Regioselective Oxidative Homocoupling Reaction: An
Efficient Copper-Catalyzed Synthesis of Biimidazo[1,2-a]pyridines.
Adv. Synth. Catal. 2015, 357, 3109−3114.
(10) (a) Uno, H.; Kitawaki, Y.; Ono, N. Novel Preparation of β,β’-
Connected Porphyrin Dimers. Chem. Commun. 2002, 116−117.
(b) Trofimov, B. A.; Zaitsev, A. B.; Schmidt, E. Y.; Vasil’tsov, A. M.;
Mikhaleva, A. I.; Ushakov, I. A.; Vashchenko, A. V.; Zorina, N. V.
From 1,4-diketones to N-vinyl Derivatives of 3,3′-Bipyrroles and 4,8-
Dihydropyrrolo[2,3-f ]indole in just Two Preparative Steps. Tetrahe-
dron Lett. 2004, 45, 3789−3791. (c) Wasserman, H. H.; DeSimone,
R. W. Singlet Oxygen Oxidation of Bipyrroles: Total Synthesis of d,l-
and meso-Isochrysohermidin. J. Am. Chem. Soc. 1993, 115, 8457−
8458. (d) Higashino, T.; Imahori, H. Hybrid [5]Radialenes with
Bispyrroloheteroles: New Electron-Donating Units. Chem. - Eur. J.
2015, 21, 13375−13381. (e) Yin, T.; Hua, R. M. Straightforward
̈
(c) Grube, A.; Kock, M. Stylissadines A and B: The First Tetrameric
Pyrrole-Imidazole Alkaloids. Org. Lett. 2006, 8, 4675−4678. (d) Fujita,
M.; Nakao, Y.; Matsunaga, S.; Seiki, M.; Itoh, Y.; Yamashita, J.; van
Soest, R. W. M.; Fusetani, N. J. Ageladine A: An Antiangiogenic
Matrixmetalloproteinase Inhibitor from the Marine Sponge Agelas
nakamurai. J. Am. Chem. Soc. 2003, 125, 15700−15701. (e) Boger, D.
L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. Total Syntheses
of Ningalin A, Lamellarin O, Lukianol A, and Permethyl Storniamide
A Utilizing Heterocyclic Azadiene Diels-Alder Reactions. J. Am. Chem.
Soc. 1999, 121, 54−62.
(2) (a) Wang, M.-Z.; Xu, H.; Liu, T.-W.; Feng, Q.; Yu, S.-J.; Wang,
S.-H.; Li, Z.-M. Design, Synthesis and Antifungal Activities of Novel
Pyrrole Alkaloid Analogs. Eur. J. Med. Chem. 2011, 46, 1463−1472.
(b) Ngwerume, S.; Camp, J. E. Synthesis of Highly Substituted
Pyrroles via Nucleophilic Catalysis. J. Org. Chem. 2010, 75, 6271−
6274. (c) Kumar, A.; Ramanand; Tadigoppula, N. Metal-Free
Synthesis of Polysubstituted Pyrroles Using Surfactants in Aqueous
Medium. Green Chem. 2017, 19, 5385−5389. (d) Vivekanand, T.;
́
Vinoth, P.; Agieshkumar, B.; Sampath, N.; Sudalai, A.; Menendezd, J.
C.; Sridharan, V. Highly Efficient Regioselective Synthesis of Pyrroles
via a Tandem Enamine Formation-Michael Addition-Cyclization
Sequence under Catalyst- and Solvent-Free Conditions. Green Chem.
2015, 17, 3415−3423.
(3) (a) Curran, D.; Grimshaw, J.; Perera, S. D. Poly(pyrro1e) as a
Support for Electrocatalytic Materials. Chem. Soc. Rev. 1991, 20, 391−
404. (b) Gabriel, S.; Cecius, M.; Fleury-Frenette, K.; Cossement, D.;
́
̂
́
̂
Hecq, M.; Ruth, N.; Jerome, R.; Jerome, C. Synthesis of Adherent
Hydrophilic Polypyrrole Coatings onto(Semi)conducting Surfaces.
Chem. Mater. 2007, 19, 2364−2371. (c) Jiang, Y. J.; Chan, W. C.;
Park, C.-M. Expedient Synthesis of Highly Substituted Pyrroles via
Tandem Rearrangement of α-Diazo Oxime Ethers. J. Am. Chem. Soc.
2012, 134, 4104−4107.
(4) (a) Banwell, M. G.; Beck, D. A. S.; Stanislawski, P. C.; Sydnes,
M. O.; Taylor, R. M. Pyrroles and gem-Dihalocyclopropanes as
Building Blocks for Alkaloid Synthesis. Curr. Org. Chem. 2005, 9,
1589−1600. (b) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F.
Lamellarins and Related Pyrrole-Derived Alkaloids from Marine
Organisms. Chem. Rev. 2008, 108, 264−287. (c) Yan, S.-Y.; Zhang, Z.-
Z.; Shi, B.-F. Nickel-Catalyzed Direct C-H Trifluoroethylation of
Heteroarenes with Trifluoroethyl Iodide. Chem. Commun. 2017, 53,
10287−10290. (d) Utepova, I. A.; Trestsova, M. A.; Chupakhin, O.
N.; Charushin, V. N.; Rempel, A. A. Aerobic Oxidative C−H/C−H
Coupling of Azaaromatics with Indoles and Pyrroles in the Presence
of TiO2 as a Photocatalyst. Green Chem. 2015, 17, 4401−4410.
(5) (a) Qiao, K.; Zhang, D.; Zhang, K.; Yuan, X.; Zheng, M.-W.;
Guo, T.-F.; Fang, Z.; Wan, L.; Guo, K. Iron(II)-Catalyzed C-2
Cyanomethylation of Indoles and Pyrroles via Direct Oxidative
Crossdehydrogenative Coupling with Acetonitrile Derivatives. Org.
Chem. Front. 2018, 5, 1129−1134. (b) Shanahan, C. S.; Truong, P.;
Mason, S. M.; Leszczynski, J. S.; Doyle, M. P. Diazoacetoacetate
Enones for the Synthesis of Diverse Natural Product-Like Scaffolds.
Org. Lett. 2013, 15, 3642−3645. (c) Jad, Y. E.; Gudimella, S. K.;
Govender, T.; de la Torre, B. G.; Albericio, F. Solid-Phase Synthesis
of Pyrrole Derivatives through a Multicomponent Reaction Involving
Lys-Containing Peptides. ACS Comb. Sci. 2018, 20, 187−191. (d) Li,
K. Z.; You, J. S. Cascade Oxidative Coupling/Cyclization: A Gateway
to 3-Amino Polysubstituted Five-Membered Heterocycles. J. Org.
Chem. 2016, 81, 2327−2339. (e) Midya, S. P.; Landge, V. G.; Sahoo,
M. K.; Rana, J.; Balaraman, E. Cobalt-Catalyzed Acceptorless
Dehydrogenative Coupling of Aminoalcohols with Alcohols: Direct
Access to Pyrrole, Pyridine and Pyrazine Derivatives. Chem. Commun.
2018, 54, 90−93.
(6) (a) Jiang, Y. J.; Chan, W. C.; Park, C.-M. Expedient Synthesis of
Highly Substituted Pyrroles via Tandem Rearrangement of α-Diazo
Oxime Ethers. J. Am. Chem. Soc. 2012, 134, 4104−4107. (b) Lei, T.;
Liu, W.-Q.; Li, J.; Huang, M.-Y.; Yang, B.; Meng, Q.-Y.; Chen, B.;
Tung, C.-H.; Wu, L.-Z. Visible Light Initiated Hantzsch Synthesis of
2,5-Diaryl-Substituted Pyrroles at Ambient Conditions. Org. Lett.
D
Org. Lett. XXXX, XXX, XXX−XXX