ORGANIC
LETTERS
2005
Vol. 7, No. 11
2181-2183
Ruthenium-Catalyzed Intermolecular
Coupling Reactions of Arylamines with
Ethylene and 1,3-Dienes: Mechanistic
Insight on Hydroamination vs ortho-C
−H
Bond Activation
Chae S. Yi* and Sang Young Yun
Department of Chemistry, Marquette UniVersity, Milwaukee, Wisconsin 53201-1881
Received March 10, 2005
ABSTRACT
+
-
The cationic ruthenium complex [(PCy3)2(CO)(Cl)Ru
aniline and ethylene to form a 1:1 ratio of N-ethylaniline and 2-methylquinoline products. The analogous reaction with 1,3-dienes resulted
in the preferential formation of Markovnikov addition products. The normal isotope effect of kNH/kND 2.2 (aniline and aniline-d7 at 80 C) and
H bond activation rate-limiting step for the catalytic
dCHCHdC(CH3)2] BF4 was found to be an effective catalyst for the coupling reaction of
∼
)
°
the Hammett G ) −0.43 (correlation of para-substituted p-X-C6H4NH2) suggest an N
−
reaction.
Transition metal-catalyzed hydroamination of alkenes and
alkynes is a highly effective method for forming new C-N
bonds.1 Though early transition and lanthanide metal catalysts
have been successfully utilized for hydroamination reactions,2
late transition metal catalysts have been shown to be
particularly promising for the functionalized substrates. Since
Milstein’s pioneering example of Ir-catalyzed hydroamina-
tion reaction of norbornene,3 a number of late transition metal
catalysts have been developed for the hydroamination
reactions. Most notably, Hartwig recently developed highly
effective chiral Pd-phosphine catalysts for the asymmetric
version of hydroamination of aryl-substituted alkenes and
dienes.4 Ozawa and co-workers developed highly active
cationic Pd-allyl catalysts for the hydroamination of 1,3-
dienes.5 Furthermore, several groups recently achieved anti-
Markovnikov hydroamination reactions of R-olefins6 and
intramolecular hydroamination of unactivated alkenes7 by
using late metal catalysts. One of the remaining challenges
for the hydroamination reaction is to develop practical
catalytic systems that can lead to an extension of a relatively
(1) Recent reviews: (a) Mu¨ller, T. E.; Beller, M. Chem. ReV. 1998, 98,
675. (b) Taube, R. In Applied Homogeneous Catalysis with Organometallic
Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH: New York, 1996.
(c) Brunet, J. J.; Neibecker, D. In Catalytic Heterofunctionalization from
Hydroamination to Hydrozirconation; Togni, A., Gru¨tzmacher, H., Eds.;
Wiley-VCH: New York, 2001. (d) Roesky, P. W.; Mu¨ller, T. E. Angew.
Chem., Int. Ed. 2003, 42, 2708.
(2) Recent examples of early transition metals: (a) Shi, Y.; Ciszewski,
J. T.; Odom, A. L. Organometallics 2001, 20, 3967. (b) Ackermann, L.
Organometallics 2003, 22, 4367. (c) Knight, P. D.; Munslow, I.;
O’Shaughnessy, P. N.; Scott, P. Chem. Commun. 2004, 894. Examples of
lanthanide metals: (d) Tian, S.; Arredondo, V. M.; Stern, C. L.; Marks, T.
J. Organometallics 1999, 18, 2568. (e) Hong, S.; Marks, T. J. J. Am. Chem.
Soc. 2002, 124, 7886. (f) Hong, S.; Tian, S.; Metz, M. V.; Marks, T. J. J.
Am. Chem. Soc. 2003, 125, 14768. (g) Ryu, J.-S.; Li, G. Y.; Marks, T. J.
J. Am. Chem. Soc. 2003, 125, 12584.
(3) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc.
1988, 110, 6738.
(4) (a) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546.
(b) Lo¨ber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123,
4366. (c) Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507.
(5) Minami, T.; Okamoto, H.; Ikeda, S.; Tanaka, R.; Ozawa, F.; Yoshifuji,
M. Angew. Chem., Int. Ed. 2001, 40, 4501.
(6) (a) Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126,
2702. (b) Sanford, M. S.; Groves, J. T. Angew. Chem., Int. Ed. 2004, 43,
588.
(7) (a) Kim, Y. K.; Livinghouse, T.; Horino, Y. J. Am. Chem. Soc. 2003,
125, 9560. (b) Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005,
127, 1070.
10.1021/ol050524+ CCC: $30.25
© 2005 American Chemical Society
Published on Web 04/30/2005