Mendeleev Commun., 2017, 27, 506–508
This work was supported by the Russian Foundation for Basic
C(21)
C(4)
C(3)
Research (grant no. 16-33-00640 mol_a) and the Ministry of
Education and Science of the Russian Federation (agreement
no. 02.a03.21.0008).
C(5)
N(1)
C(14)
C(15)
C(6)
C(4A)
C(16)
C(19)
C(17)
C(18)
O(2)
N(2)
C(1)
C(8A)
C(8)
C(20)
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2017.09.026.
C(7)
C(13)
O(1)
C(12)
C(9)
O(3)
C(10)
C(11)
C(22)
References
1 J. D. Scott and R. M. Williams, Chem. Rev., 2002, 102, 1669.
2 L. Antkiewicz-Michaluk, A. Wa˛sik and J. Michaluk, Neurotoxic. Res.,
2014, 25, 1.
Figure 1 The X-ray crystal diffraction of compound 2d.
3 Heterocycles in Natural Product Synthesis, eds. K. C. Majumdar and
S. K. Chattopadhyay, Wiley-VCH, Weinheim, 2011.
4 W. Huang, C. Ni,Y. Zhao, W. Zhang,A. D. Dilman and J. Hu, Tetrahedron,
2012, 68, 5137.
trigonal-pyramidal geometry. The phenyl substituent occupies the
sterically favorable equatorial position. The both methoxy groups
are almost coplanar to the central benzene ring.
Interestingly, in case of 1-benzyl substituted dihydroiso-
quinoline 1j, along with expected 1-cyanomethylated derivative
2j, indoloisoquinoline 4 was obtained in 10% yield (Scheme 5).
5 S. Statkova-Abeghe, P.A.Angelov, I. Ivanov, S. Nikolova and E. Kochovska
,
Tetrahedron Lett., 2007, 48, 6674.
6 J. P. Barham, P. J. Matthew and J. A. Murphy, Beilstein J. Org. Chem.,
2014, 10, 2981.
7 A. M. Taylor and S. L. Schreiber, Org. Lett., 2006, 8, 143.
8 K. N. Singh, P. Singh, A. Kaur and P. Singh, Synlett, 2012, 760.
9 E. Boess, C. Schmitz and M. Klussmann, J. Am. Chem. Soc., 2012, 134,
5317.
10 T. Nobuta, N. Tada, A. Fujiya, A. Kariya, T. Miura and A. Itoh, Org.
Lett., 2013, 15, 574.
TMS
MeO
MeO
MeO
MeO
OTf
N
N
MeCN, CsF
65 °C
Ph
CN
Ph
1j
11 J. Hu, J. Wang, T. H. Nguyen and N. Zheng, Beilstein J. Org. Chem.,
Ph
2j (35%)
2013, 9, 1977.
O2
12 F. Nawaz, K. Mohanan, L. Charles, M. Rajzmann, D. Bonne, O. Chuzel,
J. Rodriguez and Y. Coquerel, Chem. Eur. J., 2013, 19, 17578.
13 A. Bunescu, C. Piemontesi, Q. Wang and J. Zhu, Chem. Commun., 2013,
49, 10284.
14 C. E. Hendrick and Q. Wang, J. Org. Chem., 2015, 80, 1059.
15 J. Shi, D. Qiu, J. Wang, H. Xu and Y. Li, J. Am. Chem. Soc., 2015, 137,
5670.
+
MeO
MeO
MeO
MeO
N
N
Ph
O
Ph
O
16 Z. Liu, F. Shi, P. D. G. Martinez, C. Raminelli and R. C. Larock, J. Org.
Chem., 2008, 73, 219.
E
4 (10%)
17 D. S. Kopchuk, I. L. Nikonov, G.V. Zyryanov, E.V. Nosova, I. S. Kovalev,
P
. A. Slepukhin, V. L. Rusinov and O. N. Chupakhin, Mendeleev Commun.,
2015, 25, 13.
MeO
MeO
MeO
MeO
18 M. Jeganmohan and C.-H. Cheng, Chem. Commun., 2006, 2454.
19 S. S. Bhojgude, A. Bhunia and A. T. Biju, Acc. Chem. Res., 2016, 49,
1658.
N
N
20 K. Liu, L.-L. Liu, C.-Z. Gu, B. Dai and L. He, RSC Adv., 2016, 6, 33606.
21 S.-E. Suh and D. M. Chenoweth, Org. Lett., 2016, 18, 4080.
22 D. Stephens, Y. Zhang, M. Cormier, G. Chavez, H. Arman and O. V.
Larionov, Chem. Commun., 2013, 49, 6558.
Ph
O
Ph
O
F
G
23 A. Bhunia, T. Roy, P. Pachfule, P. R. Rajamohanan and A. T. Biju, Angew.
Scheme 5
Chem. Int. Ed., 2013, 52, 10040.
24 A. Bhunia, D. Porwal, R. G. Gonnade and A. T. Biju, Org. Lett., 2013,
15, 4620.
25 F. Sha and X. Huang, Angew. Chem. Int. Ed., 2009, 48, 3458.
26 A. Bhunia, T. Roy, R. G. Gonnade and A. T. Biju, Org. Lett., 2014,
16, 5132.
27 V. A. Glushkov, S. N. Shurov, O. A. Maiorova, G. A. Postanogova,
E. V. Feshina and Yu. V. Shklyaev, Chem. Heterocycl. Compd., 2001,
37, 444 (Khim. Geterotsikl. Soedin., 2001, 37, 492).
28 M. Alajarin, C. Lopez-Leonardo, R. Raja and R.-A. Orenes, Org. Lett.,
2011, 13, 5668.
Apparently, its formation occurs due to the presence of
methylene fragment in the reactant, which is easily oxidized
by accidental oxygen during the reaction leading to ketone E.
The latter can react with aryne giving zwitter-ion F which
undergoes further cyclization into intermediate G. Intramolecular
nucleophilic substitution in G followed by phenyl anion migra-
tion to the C-1 position of isoquinoline moiety results in indolo-
[2,1-a]isoquinolinone 4.
This hypothesis has been confirmed by reaction of 1-aroyl
29 C. Lopez-Leonardo, R. Raja, F. López-Ortiz, M. Á. del Águila-Sánchez
substituted dihydroisoquinolines with arynes.31
and M. Alajarin, Eur. J. Org. Chem., 2014, 1084.
30 J. B. Feltenberger, R. Hayashi,Y. Tang, E. S. C. Babiash and R. P. Hsung,
Org. Lett., 2009, 11, 3666.
31 A. V. Varlamov, N. I. Guranova, R. A. Novikov, V. V. Ilyushenkova,
V. N. Khrustalev, N. S. Baleeva, T. N. Borisova and L. G. Voskressensky,
RSC Adv., 2016, 6, 12642.
In summary, we developed an approach toward 1- and 4-func-
tionalized tetrahydroisoquinolines and tetrahydrothienopyridines,
respectively, based on MCR of dihydroisoquinolines or thieno-
pyridines with benzyne and acetonitrile used both as a solvent and
as a third component. These compounds are of interest from the
synthetic point of view due to the presence of cyano group that
can be readily modified for further transformations. Benzyl
substituted dihydroisoquinoline gave a product of aryne insertion
along with the expected 1-cyanomethyl substituted tetrahydro-
isoquinoline.
Received: 16th January 2017; Com. 17/5148
– 508 –