Journal of the American Chemical Society
Article
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by NSERC (Discovery Grant and
Canada Research Chairs programs), the McLean Foundation
and University of Toronto (McLean Award to M.S.T.), the
Canada Foundation for Innovation (project nos. 17545 and
19119), and the Ontario Ministry of Research and Innovation.
Computations were performed on resources and with support
provided by the Centre for Advanced Computing (CAC) at
Queen’s University in Kingston, Ontario. The CAC is funded
by: the Canada Foundation for Innovation, the Government of
Ontario, and Queen’s University.
REFERENCES
■
(1) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F; Buchwald, S. L. Acc. Chem.
Res. 1998, 31, 805−818.
(2) Hartwig, J. F. Nature 2008, 455, 314−322.
(3) Bariwal, J.; Van der Eycken, E. Chem. Soc. Rev. 2013, 42, 9283−
9303.
Figure 1. Calculated transition state structures. (a) Boronic ester-
assisted transmetalation. (b) Boronic ester-directed copper(III)
alkoxide formation. Calculations were carried out using density
functional theory with the B97-D3 functional and Def2-TZVP basis
set.
(4) Shafir, A.; Lichtor, P. A.; Buchwald, S. L. J. Am. Chem. Soc. 2007,
129, 3490−3491.
(5) Kung, K. K.-Y.; Ko, H.-M.; Cui, J.-F.; Chong, H.-C.; Leung, Y.-C.;
Wong, M.-K. Chem. Commun. 2014, 50, 11899−11902.
(6) Vinogradova, E.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.;
Buchwald, S. L. Nature 2015, 526, 687−691.
functionalized carbohydrate derivatives that would be difficult
to generate by existing methods. Sugars show considerable
potential as scaffolds or linkers in medicinal chemistry,60−62 and
the ability to conduct new types of selective O-functionaliza-
tions may create opportunities in this regard. The efficiency and
site-selectivity of the reactions described here are striking in
light of the challenges associated with copper-mediated O-
arylation of aliphatic alcohols. Both of these features appear to
hinge on the involvement of a boronic ester intermediate
generated by condensation of the boronic acid and
carbohydrate reagents. The formation of the boronic ester
not only transiently protects a diol moiety in the sugar substrate
but also accelerates the arylation of an adjacent hydroxyl group.
The acceleration of O-arylation provided by a neighboring
boronic ester substituent has been probed through competition
experiments, and possible origins of such an effect have been
suggested based on computational modeling of proposed
transition states. These observations have revealed a new facet
of the reactivity of boronic acids with sugar derivatives and may
facilitate applications of sugar-derived aryl ethers in organic
synthesis, medicinal chemistry, and glycobiology.
(7) Willwacher, J.; Raj, R.; Mohammed, S.; Davis, B. G. J. Am. Chem.
Soc. 2016, 138, 8678−8681.
(8) Rojas, A. J.; Zhang, C.; Vinogradova, E. V.; Buchwald, N.; Reily,
J.; Pentelute, B. L.; Buchwald, S. L. Chem. Sci. 2017, 8, 4257−4263.
(9) Zhao, W.; Lee, H. G.; Buchwald, S. L.; Hooker, J. M. J. Am. Chem.
Soc. 2017, 139, 7152−7155.
(10) Cohen, D. T.; Zhang, C.; Pentelute, B. L.; Buchwald, S. L. J. Am.
Chem. Soc. 2015, 137, 9784−9787.
(11) Lee, H. G.; Lautrette, G.; Pentelute, B. L.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2017, 56, 3177−3181.
(12) Ohata, J.; Minus, M. B.; Abernathy, M. E.; Ball, Z. T. J. Am.
Chem. Soc. 2016, 138, 7472−7475.
(13) Ernst, B.; Magnani, J. L. Nat. Rev. Drug Discovery 2009, 8, 661−
677.
(14) Henderson, A. S.; Bower, J. F.; Galan, M. C. Org. Biomol. Chem.
2016, 14, 4008−4017.
(15) Jacobsson, M.; Malmberg, J.; Ellervik, U. Carbohydr. Res. 2006,
341, 1266−1281.
(16) Cerny, M. Chemistry of anhydro sugars. In Advances in
Carbohydrate Chemistry and Biochemistry; Horton, D., Ed.; Elsevier,
2003; Vol. 58, pp 121−198.
̌
́
̌ ̌ ̌ ̌
P.; Leseticky, L.; Smrcek, S.; Tislerova, I.; Stícha, M.
(17) Naus,
Synlett 2003, 14, 2117−2122.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
(18) Chida, N. J. Yuki Gosei Kagaku Kyokaishi 2008, 66, 1105−1115.
(19) Brachet, E.; Brion, J.-D.; Messaoudi, S.; Alami, M. Adv. Synth.
Catal. 2013, 355, 477−490.
S
(20) Bruneau, A.; Brion, J.-D.; Alami, M.; Messaoudi, S. Chem.
Commun. 2013, 49, 8359−8361.
(21) Brachet, E.; Brion, J.-D.; Alami, M.; Messaoudi, S. Chem. - Eur. J.
2013, 19, 15276−15280.
(22) Bruneau, A.; Roche, M.; Hamze, A.; Brion, J.-D.; Alami, M.;
Messaoudi, S. Chem. - Eur. J. 2015, 21, 8375−8379.
(23) Chabrier, A.; Bruneau, A.; Benmahdjoub, S.; Benmerad, B.;
Belaid, S.; Brion, J.-D.; Alami, M.; Messaoudi, S. Chem. - Eur. J. 2016,
22, 15006−15010.
(24) Luong, T. T. H.; Brion, J.-D.; Lescop, E.; Alami, M.; Messaoudi,
S. Org. Lett. 2016, 18, 2126−2129.
(25) Al-Shuaeeb, R. A. A.; Montoir, D.; Alami, M.; Messaoudi, S. J.
Org. Chem. 2017, 82, 6720−6728.
Experimental and computational details, characterization
1
data for new compounds, copies of H and 13C NMR
AUTHOR INFORMATION
Corresponding Author
■
ORCID
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX