Page 19 of 20
The Journal of Organic Chemistry
1
2
3
4
5
6
7
8
9
87.
Sun, S. Zhao, G.; Huang, Y.; Cai, M.; Yan, Q.; Wang, H.; Chen. Y., Enantiomeric effect of D-amino
acid substitution on the mechanism of action of α-helical membrane-active peptides. Int. J. Mol. Sci.
2018, 19, 67.
88.
peptides to improve specificity. Protein Cell 2014, 5, 631.
89. Chen, Y. Mant, C. T.; Farmer, S. W.; Hancock, R. E. W.; Vasil, M. L.; Hodges, R. S., Rational
Huang, Y. He, L.; Li, G.; Zhai, N.; Jiang, H.; Chen. Y., Role of helicity of α-helical antimicrobial
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index.
J. Biol. Chem. 2005, 280, 12316.
90.
Bird, G. H. Mazzola, E.; Opoku-Nsiah, K.; Lammert, M. A.; Godes, M.; Neuberg, D. S.; Walensky,
L. D., Biophysical determinants for cellular uptake of hydrocarbon-stapled peptide helices. Nat. Chem.
Biol. 2016, 12, 845.
91.
Partridge, A. W. Kaan, H. Y. K.; Juang, Y.-C.; Sadruddin, A.; Lim, S.; Brown, C. J.; Ng, S.; Thean,
D.; Ferrer, F.; Johannes, C.; Yuen, T. Y.; Kannan, S.; Aronica, P.; Tan, Y. S.; Pradhan, M. R.; Verma, C. S.;
Hochman, J.; Chen, S.; Wan, H.; Ha, S.; Sherborne, B.; Lane, D. P.; Sawyer, T. K., Incorporation of
putative helix-breaking amino acids in the design of novel stapled peptides: exploring biophysical and
cellular permeability properties. Molecules 2019, 24, 2292.
92.
cellular uptake of all-hydrocarbon stapled peptides. Mol. Pharmaceutics 2018, 15, 1332.
93. Lu, X. Burbridge, S. A.; Griffin, S.; Smith, H. M., Discordance between accumulated p53 protein
level and its transcriptional activity in response to u.v. radiation. Oncogene 1996, 13, 413.
94. Chee, S. M. Q. Wongsantichon, J.; Tng, Q. S.; Robinson, R.; Joseph, T. L.; Verma, C.; Lane, D. P.;
Sakagami, K. Masuda, T.; Kawano, K.; Futaki, S., Importance of net hydrophobicity in the
Brown, C. J.; Ghadessy, F. J., Structure of a stapled peptide antagonist bound to nutlin-resistant Mdm2.
PLoS One 2014, 9.
95.
for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004, 32, W665.
96. Case, D. A. Ben-Shalom, I. Y.; Brozell, S. R.; Cerutti, D. S.; Cheatham, T. E., III; Cruzeiro, V. W.
Dolinsky, T. J. Nielsen, J. E.; McCammon, J. A.; Baker, N. A., PDB2PQR: an automated pipeline
D.; Darden, T. A.; Duke, R. E.; Ghoreishi, D.; Gilson, M. K.; Gohlke, H.; Goetz, A. W.; Greene, D.; Harris,
R.; Homeyer, N.; Izadi, S.; Kovalenko, A.; Kurtzman, T.; Lee, T. S.; LeGrand, S.; Li, P.; Lin, C.; Liu, J.;
Luchko, T.; Leuo, R.; Mermelstein, D. J.; Merz, K. M.; Miao, Y.; Monard, G.; Nguygen, C.; Nguygen, H.;
Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.; Roe, D. R.; Roitberg, A.; Sagui, C.; Schott-Verdugo, S.; Shen, J.;
Simmerling, C. L.; Smith, J.; Salomon-Ferrer, R.; Swails, J.; Walker, R. C.; Wang, J.; Wei, H.; Wolf, R. M.;
Wu, X.; Xiao, L.; York, D. M.; Kollman, P. A., AMBER 18. Unversity of California, San Francisco 2018.
97.
simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926.
98. Maier, J. A. Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C.,, ff14SBL:
Jorgensen, W. L. Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.,, Comparison of
improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory
Comput. 2015, 11, 3696.
99.
Wang, J. M. Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A.,, Development and testing
of a general amber force field. J. Comput. Chem. 2004, 25, 1157.
100. Vanquelef, E. Simons, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J. C.; Cieplak, P.;
Dupradeau, F.-Y.,, R.E.D. Server: a web service for deriving RESP and ESP charges and building force
field libraries for new molecules and molecular fragments. . Nucleic Acids Res. 2011, 39, W511.
101. Cornell, W. D. Cieplak, P.; Bayly, C. I.; Kollman, P. A.,, Application of RESP charges to calculate
conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc.
1993, 115, 9620.
102. Frisch, M. J. Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian,
H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J.
A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,
ACS Paragon Plus Environment