Journal of the American Chemical Society
Communication
(16) Zinc ester enolates have previously been shown to undergo α-
allylation when treated with allyl acetate and Pd(PPh3)4. For a seminal
example, see: Boldrini, G. P.; Mengoli, M.; Tagliavini, E.; Trombini, C.;
Umani-Ronchi, A. Tetrahedron Lett. 1986, 27, 4223.
protocol check and Mr. Alexander Thompson for early
experiments.
1
REFERENCES
(17) The difference in the H NMR and isolated yields may be the
■
result of the formation of many minor byproducts, loss of material
during purification, or a systematic error in the measurement of the 1H
NMR yield.
(18) For seminal examples of lactone dehydrogenation under forcing
conditions, see: (a) (PhSeO)2O: Barton, D. H.; Lester, D. J.; Ley, S. V. J.
Chem. Soc., Chem. Commun. 1978, 130. (b) DDQ: Cross, A. D. (Syntex
Corp.). Neth. Pat. 6.503,543 (1965).
(19) For an isolated example of leveraging aromaticity as a driving force
to form coumarins, see: Jagdale, A. R.; Sudalai, A. Tetrahedron Lett. 2008,
49, 3790.
(1) For reviews of α,β-dehydrogenation, see: (a) Walker, D.; Hiebert, J.
D. Chem. Rev. 1967, 67, 153. (b) Reich, H. J.; Wollowitz, S. Org. React.
1993, 44, 1. (c) Muzart, J. Eur. J. Org. Chem. 2010, 3779. (d) Stahl, S. S.;
Diao, T. Comp. Org. Synth. 2014, 7, 178.
(2) For seminal examples of α,β-dehydrogenation, see: (a) Astin, S.;
Newman, A. C. C.; Riley, H. L. J. Chem. Soc., Res. 1933, 391. (b) Agnello,
E. J.; Laubach, G. D. J. Am. Chem. Soc. 1957, 79, 1257.
(3) (a) Nicolaou, K. C.; Zhong, Y. L.; Baran, P. S. J. Am. Chem. Soc.
2000, 122, 7596. (b) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.;
Zhong, Y. L. J. Am. Chem. Soc. 2002, 124, 2245. (c) Nicolaou, K. C.;
Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993.
(d) Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T.
Angew. Chem., Int. Ed. 2002, 41, 996.
(4) (a) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566.
(b) Diao, T.; Wadzinski, T. J.; Stahl, S. S. Chem. Sci. 2012, 3, 887.
(c) Diao, T.; Pun, D.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8205.
(d) Izawa, Y.; Zheng, C.; Stahl, S. S. Angew. Chem., Int. Ed. 2013, 52,
3672.
(5) (a) Theissen, R. J. J. Org. Chem. 1971, 36, 752. (b) Ito, Y.; Hirao, T.;
Saegusa, T. J. Org. Chem. 1978, 43, 1011. (c) Shimizu, I.; Minami, I.;
Tsuji, J. Tetrahedron Lett. 1983, 24, 1797. (d) Larock, R. C.; Hightower,
T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. Tetrahedron Lett. 1995, 36,
2423.
(6) Similarly, Mukaiyama’s reagent proceeds via a mechanism that
results in low conversion. Difficulty in chromatographic separation of
the starting material from the product resulted in only NMR yields being
reported. See: Matsuo, J.-i.; Aizawa, Y. Tetrahedron Lett. 2005, 46, 407.
(7) For examples of α,β-dehydrogenation of the more acidic α-phenyl
and β-keto nitriles, see: (a) Levine, R.; Sheppard, C. S. J. Org. Chem.
1974, 39, 3556. (b) DiBiase, S. A.; Wolak, R. P., Jr.; Dishong, D. M.;
Gokel, G. W. J. Org. Chem. 1980, 45, 3630. (c) Noda, Y.; Akiba, Y.;
Kashima, M. Synth. Commun. 1996, 26, 4633.
(20) See the Supporting Information for selected reaction conditions
for the α,β-dehydrogenation of nitriles.
(21) With the reported reaction conditions some functionality was not
tolerated, including lactones that lack substitution at the β-position,
protected amino acids, and α-aryl-substituted nitriles. Additionally,
substrates were generally selected such that regioisomers could not be
formed during the β-hydride elimination.
(22) In order to obtain initial rate data, the catalyst loading was
decreased to 0.125 mol %. See the Supporting Information for details.
́
(23) (a) Gomez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857.
(b) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066.
(24) Alexanian, E. J.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 15627.
(25) (a) Abis, L.; Sen, A.; Halpern, J. J. Am. Chem. Soc. 1978, 100, 2915.
(b) McCarthy, T. J.; Nuzzo, R. G.; Whitesides, G. M. J. Am. Chem. Soc.
1981, 103, 3396. (c) Michelin, R. A.; Faglia, S.; Uguagliati, P. Inorg.
Chem. 1983, 22, 1831.
(26) Contributions from tunneling or a secondary KIE to the measured
KIE values cannot be determined at this juncture. For a related
discussion, see: Datta, A.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc.
2008, 130, 2726.
(8) For an example of α,β-dehydrogenation of activated esters using
DDQ, see: Clarke, P. D.; Fitton, A. O.; Suschitzky, H.; Wallace, T. W.
Tetrahedron Lett. 1986, 27, 91.
(9) (a) Reich, H. J.; Reich, I. L.; Renga, J. M. J. Am. Chem. Soc. 1973, 95,
5813. (b) Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. J. Am. Chem. Soc.
1973, 95, 6137. (c) Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem.
Soc. 1976, 98, 4887.
(10) (a) Palladium cyanoalkyl complexes may exist as C- or N-bound
monomers or higher-order aggregates. See: Culkin, D. A.; Hartwig, J. F.
J. Am. Chem. Soc. 2002, 124, 9330 and references therein. (b) Palladium
ester enolates usually exist as C-bound monomers or higher-order
aggregates. See: Tian, G.; Boyle, P. D.; Novak, B. M. Organometallics
2002, 21, 1462.
(11) In the case of metalated nitriles, solution and solid-state structures
of C- and N-bound alkali-metal aggregate structures have been reported.
See: Collum, D. B.; McNeil, A. J.; Ramirez, A. Angew. Chem., Int. Ed.
2007, 46, 3002 and references therein.
(12) Syn and anti β-hydride elimination are conceivable. See:
(a) Takacs, J. M.; Lawson, E. C.; Clement, F. J. Am. Chem. Soc. 1997,
119, 5956. (b) Lloyd-Jones, G. C.; Slatford, P. A. J. Am. Chem. Soc. 2004,
126, 2690.
(13) Product dissociation may occur before or after the reductive
elimination step. See: Porth, S.; Bats, J. W.; Trauner, D.; Giester, G.;
Mulzer, J. Angew. Chem., Int. Ed. 1999, 38, 2015.
(14) For the stereochemical outcome of nucleophilic attack of anionic
carbonucleophiles, which is generally interpreted as nucleophilic attack
at carbon, see: (a) Trost, B. M.; Weber, L. J. Am. Chem. Soc. 1975, 97,
1611. (b) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(15) The role of dimeric or polymeric enolate species or Pd
intermediates cannot be excluded. See: Hruszkewycz, D. P.; Balcells,
D.; Guard, L. M.; Hazari, N.; Tilset, M. J. Am. Chem. Soc. 2014, 136,
7300.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX