ACS Catalysis
REFERENCES
Research Article
Malakhov, V.; Knochel, P. Regio- and Chemoselective Metalation of
Arenes and Heteroarenes Using Hindered Metal Amide Bases. Angew.
Chem., Int. Ed. 2011, 50, 9794−9824; Angew. Chem. 2011, 123,
9968−9999. (d) Knochel, P.; Benischke, A.; Ellwart, M.; Becker, M.
Polyfunctional Zinc and Magnesium Organometallics for Organic
Synthesis: Some Perspectives. Synthesis 2016, 48, 1101−1107.
(8) For recent reviews on the use of organomagnesium hydride
complexes as catalysts, see: (a) Crimmin, M. R.; Hill, M. S.
Homogeneous Catalysis with Organometallic Complexes of Group
2. Top. Organomet. Chem. 2013, 45, 191−241. (b) Revunova, K.;
Nikonov, G. I. Main Group Catalysed Reduction of Unsaturated
bonds. Dalton Trans. 2015, 44, 840−866. (c) Pellissier, H.
Enantioselective Magnesium-Catalyzed Transformations. Org. Biomol.
Chem. 2017, 15, 4750−4782.
■
(1) (a) Aresta, M. Carbon Dioxide as Chemical Feedstock; Wiley-
VCH: Weinheim, 2010. (b) Maeda, C.; Miyazaki, Y.; Ema, T. Recent
Progress in Catalytic Conversions of Carbon Dioxide. Catal. Sci.
Technol. 2014, 4, 1482−1497.
(2) For the reviews on transformation of epoxides to carbonates, see:
(a) North, M.; Pasquale, R.; Young, C. Synthesis of Cyclic Carbonates
from Epoxides and CO2. Green Chem. 2010, 12, 1514−1539. (b) He,
Q.; O’Brien, J. W.; Kitselman, K. A.; Tompkins, L. E.; Curtis, G. C. T.;
Kerton, F. M. Synthesis of Cyclic Carbonates from CO2 and Epoxides
Using Ionic Liquids and Related Catalysts Including Choline
Chloride−Metal Halide Mixtures. Catal. Sci. Technol. 2014, 4,
1513−1528. (c) Martín, C.; Fiorani, G.; Kleij, A. W. Recent Advances
in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal.
2015, 5, 1353−1370. (d) Comerford, J. W.; Ingram, I. D. V.; North,
M.; Wu, X. Sustainable Metal-Based Catalysts for the Synthesis of
Cyclic Carbonates Containing Five-Membered Rings. Green Chem.
2015, 17, 1966−1987. (e) Cokoja, M.; Wilhelm, M. E.; Anthofer, M.
(9) For illustrative examples of the β-diketiminate−magnesium
complexes as catalyst precursors, see: (a) Green, S. P.; Jones, C.;
Stasch, A. Stable Adducts of a Dimeric Magnesium(I) Compound.
Angew. Chem., Int. Ed. 2008, 47, 9079−9083. (b) Arrowsmith, M.;
̈
Hill, M. S.; Hadlington, T.; Kociok-Kohn, G.; Weetman, C.
H.; Herrmann, W. A.; Kuhn, F. E. Synthesis of Cyclic Carbonates
̈
from Epoxides and Carbon Dioxide by Using Organocatalysts.
Magnesium-Catalyzed Hydroboration of Pyridines. Organometallics
2011, 30, 5556−5559. (c) Harder, S.; Spielmann, J.; Intemann, J.
Synthesis and Thermal Decomposition of a Pyridylene-Bridged Bis-β-
diketiminate Magnesium Hydride Cluster. Dalton Trans. 2014, 43,
14284−14290. (d) Garcia, L.; Dinoi, C.; Mahon, M. F.; Maron, L.;
Hill, M. S. Magnesium Hydride Alkene Insertion and Catalytic
Hydrosilylation. Chem. Sci. 2019, 10, 8108−8118.
(10) β-Diketiminate−magnesium complexes have also been
succesfully applied in C−H and C−F activations. For the leading
examples see: (a) Davin, L.; McLellan, R.; Kennedy, A. R.; Hevia, E.
Ligand-Induced Reactivity of β-Diketiminate Magnesium Complexes
for Regioselective Functionalization of Fluoroarenes via C−H or C−F
Bond Activations. Chem. Commun. 2017, 53, 11650−11653.
(b) Davin, L.; McLellan, R.; Hernan-Gomez, A.; Clegg, W.;
Kennedy, A. R.; Mertens, M.; Stepek, I. A.; Hevia, E. Regioselective
Magnesiation of N-Heterocyclic Molecules: Securing Insecure Cyclic
Anions by a β-Diketiminate-Magnesium Clamp. Chem. Commun.
2017, 53, 3653−3656.
(11) For MgBu2-catalyzed hydroborations, see: (a) Magre, M.;
Maity, B.; Falconnet, A.; Cavallo, L.; Rueping, M. Magnesium-
Catalyzed Hydroboration of Terminal and Internal Alkynes. Angew.
Chem., Int. Ed. 2019, 58, 7025−7029. (b) Jang, Y. K.; Magre, M.;
Rueping, M. Chemoselective Luche-Type Reduction of α,β-
Unsaturated Ketones by Magnesium Catalysis. Org. Lett. 2019, 21,
8349−8352.
(12) For leading examples of β-diketiminate−magnesium complexes
in hydroboration reactions, see: ref 9b and (a) Arrowsmith, M.;
Hadlington, T. J.; Hill, M. S.; Kociok-Kohn, G. Magnesium-Catalysed
ChemSusChem 2015, 8, 2436−2454.
̈
̈
̈
(3) Schaffner, B.; Schaffner, F.; Verevkin, S. P.; Borner, A. Organic
Carbonates as Solvents in Synthesis and Catalysis. Chem. Rev. 2010,
110, 4554−4581.
(4) For selected examples, see: (a) Balaraman, E.; Gunanathan, C.;
Zhang, J.; Shimon, L. J. W.; Milstein, D. Efficient Hydrogenation of
Organic Carbonates, Carbamates and Formates Indicates Alternative
Routes to Methanol Based on CO2 and CO. Nat. Chem. 2011, 3,
609−614. (b) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding,
K. Catalytic Hydrogenation of Cyclic Carbonates: a Practical
Approach from CO2 and Epoxides to Methanol and Diols. Angew.
Chem., Int. Ed. 2012, 51, 13041−13045; Angew. Chem. 2012, 124,
13218−13222. (c) Kim, S. H.; Hong, S. H. Transfer Hydrogenation
of Organic Formates and Cyclic Carbonates: An Alternative Route to
Methanol from Carbon Dioxide. ACS Catal. 2014, 4, 3630−3636.
́
́
̈
(d) vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Holscher,
M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W.
Highly Versatile Catalytic Hydrogenation of Carboxylic and Carbonic
Acid Derivatives using a Ru-Triphos Complex: Molecular Control
over Selectivity and Substrate Scope. J. Am. Chem. Soc. 2014, 136,
13217−13225. (e) Zubar, V.; Lebedev, Y.; Azofra, L. M.; Cavallo, L.;
El-Sepelgy, O.; Rueping, M. Hydrogenation of CO2-Derived
Carbonates and Polycarbonates to Methanol and Diols by Metal-
Ligand Cooperative Manganese Catalysis. Angew. Chem., Int. Ed.
2018, 57, 13439−13443. (f) Kumar, A.; Janes, T.; Espinosa-Jalapa, N.
A.; Milstein, D. Manganese Catalyzed Hydrogenation of Organic
Carbonates to Methanol and Alcohols. Angew. Chem., Int. Ed. 2018,
57, 12076−12080; Angew. Chem. 2018, 130, 12252−12256.
̈
Hydroboration of Aldehydes and Ketones. Chem. Commun. 2012, 48,
4567−4569. (b) Mukherjee, D.; Ellern, A.; Sadow, A. D. Magnesium-
Catalyzed Hydroboration of Esters: Evidence for a New Zwitterionic
Mechanism. Chem. Sci. 2014, 5, 959−964. (c) Anker, M. D.;
̈
(g) Kaithal, A.; Holscher, M.; Leitner, W. Catalytic Hydrogenation
of Cyclic Carbonates using Manganese Complexes. Angew. Chem., Int.
Ed. 2018, 57, 13449−13453; Angew. Chem. 2018, 130, 13637−13641.
̈
Arrowsmith, M.; Bellham, P.; Hill, M. S.; Kociok-Kohn, G.; Liptrot,
(5) Erken, C.; Kaithal, A.; Sen, S.; Weyhermuller, T.; Holscher, M.;
̈
̈
D. J.; Mahon, M. F.; Weetman, C. Selective Reduction of CO2 to a
Methanol Equivalent by B(C6F5)3-Activated Alkaline Earth Catalysis.
Chem. Sci. 2014, 5, 2826−2830. (d) Li, J.; Luo, M.; Sheng, X.; Hua,
H.; Yao, W.; Pullarkat, S. A.; Xu, L.; Ma, M. Unsymmetrical β-
Diketiminate Magnesium(I) Complexes: Syntheses and Application
in Catalytic Hydroboration of Alkyne, Nitrile and Carbonyl
Compounds. Org. Chem. Front. 2018, 5, 3538−3547. (e) Yadav, S.;
Dixit, R.; Bisai, M. K.; Vanka, K.; Sen, S. S. Alkaline Earth Metal
Compounds of Methylpyridinato β-Diketiminate Ligands and Their
Catalytic Application in Hydroboration of Aldehydes and Ketones.
Organometallics 2018, 37, 4576−4584.
́
Werle, C.; Leitner, W. Manganese-Catalyzed Hydroboration of
Carbon Dioxide and Other Challenging Carbonyl Groups. Nat.
Commun. 2018, 9, 4521.
(6) (a) Hill, M. S.; Liptrot, D. J.; Weetman, C. Alkaline Earths as
Main Group Reagents in Molecular Catalysis. Chem. Soc. Rev. 2016,
45, 972−988. (b) Rochat, R.; Lopez, M. J.; Tsurugi, H.; Mashima, K.
Recent Developments in Homogeneous Organomagnesium Catalysis.
ChemCatChem 2016, 8, 10−20.
(7) For illustrative examples using magnesium organometallics for
deprotonation/metalation reactions, see: (a) Dong, Z.; Clososki, G.
C.; Wunderlich, S. H.; Unsinn, A.; Li, J.; Knochel, P. Direct Zincation
of Functionalized Aromatics and Heterocycles by Using a Magnesium
Base in the Presence of ZnCl2. Chem.Eur. J. 2009, 15, 457−468.
(b) Piller, F. M.; Bresser, T.; Fischer, M. K. R.; Knochel, P.
Preparation of Functionalized Cyclic Enol Phosphates by Halogen−
Magnesium Exchange and Directed Deprotonation Reactions. J. Org.
Chem. 2010, 75, 4365−4375. (c) Haag, B.; Mosrin, M.; Ila, H.;
(13) For various magnesium complexes used in hydroboration
reactions, see: (a) Mukherjee, D.; Shirase, S.; Spaniol, T. P.; Mashima,
K.; Okuda, J. Magnesium Hydridotriphenylborate [Mg(thf)6]-
[HBPh3]2: a Versatile Hydroboration Catalyst. Chem. Commun.
2016, 52, 13155−13158. (b) Manna, K.; Ji, P.; Greene, F. X.; Lin,
W. Metal−Organic Framework Nodes Support Single-Site Magne-
11638
ACS Catal. 2019, 9, 11634−11639