A. R. Nödling, G. Jakab, P. R. Schreiner, G. Hilt
SHORT COMMUNICATION
study of the privileged 3,5-bis(trifluoromethyl)phenyl group,
see: K. M. Lippert, K. Hof, D. Gerbig, D. Ley, H. Hausmann,
S. Guenther, P. R. Schreiner, Eur. J. Org. Chem. 2012, 5919–
5927.
[1] Selected, early examples of hydrogen-bond-donor catalysis: a)
H. Hiemstra, H. Wynberg, J. Am. Chem. Soc. 1981, 103, 417–
429; b) J.-I. Oku, S. Inoue, J. Chem. Soc., Chem. Commun.
1981, 229–230; c) U.-H. Dolling, P. Davis, E. J. J. Grabowski,
J. Am. Chem. Soc. 1984, 106, 446–447; d) J. Hine, S.-M. Lin-
den, V. M. Kanagasabapathy, J. Am. Chem. Soc. 1985, 107,
1082–1083; e) T. R. Kelly, P. Meehani, V. S. Ekkundi, Tetrahe-
dron Lett. 1990, 31, 3381–3884; f) D. P. Curran, L. H. Kuo, J.
Org. Chem. 1994, 59, 3259–3261; g) M. S. Sigman, E. N. Ja-
cobsen, J. Am. Chem. Soc. 1998, 120, 4901–4902; h) A.
Wittkopp, P. R. Schreiner, Diels–Alder Reactions in Water and
in Hydrogen-Bonding Environments, in: The Chemistry of Dienes
and Polyenes (Ed.: Z. Rappoport), Wiley, Chichester, UK,
2000, vol. 2, p. 1029–1088.
[2] Recent reviews of hydrogen-bond-donor catalysis: a) P. R.
Schreiner, Chem. Soc. Rev. 2003, 32, 289–296; b) A. G. Doyle,
E. N. Jacobsen, Chem. Rev. 2007, 107, 5713–5743; c) Z. Zhang,
P. R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187–1198; d) J.
Alemán, A. Parra, H. Jiang, K. A. Jørgensen, Chem. Eur. J.
2011, 17, 6890–6899; e) K. M. Lippert, K. Hof, P. R. Schreiner,
Hydrogen-Bonding Catalysis: (Thio)urea Catalysis, in: Science
of Synthesis (Eds.: K. Maruoka, B. List), Thieme, Stuttgart,
Germany, 2012, p. 297–412; f) R. C. Wende, P. R. Schreiner,
Green Chem. 2012, 14, 1821–1849; g) O. V. Serdyuk, C. M.
Heckel, S. B. Tsogoeva, Org. Biomol. Chem. 2013, 11, 7051–
7071.
[3] a) P. R. Schreiner, A. Wittkopp, Org. Lett. 2002, 4, 217–220; b)
A. Wittkopp, P. R. Schreiner, Chem. Eur. J. 2003, 9, 407–414.
[4] First example: T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem.
Soc. 2003, 125, 12672–12673; for other examples, see ref.[2]
[5] For selected recent examples, see: a) S. Lin, L. Deiana, G.-L.
Zhao, J. Sun, A. Córdova, Angew. Chem. Int. Ed. 2011, 50,
7624–7630; Angew. Chem. 2011, 123, 7766–7772; b) H. Y. Kim,
K. Oh, Org. Lett. 2011, 13, 1306–1309; c) N. Z. Burns, M. R.
Witten, E. N. Jacobsen, J. Am. Chem. Soc. 2011, 133, 14578–
14581; d) Y. Wang, T.-Y. Yu, H.-B. Zhang, Y.-C. Luo, P.-F. Xu,
Angew. Chem. Int. Ed. 2012, 51, 12339–12342; Angew. Chem.
2012, 124, 12505–12508.
[8] pKa values and structure–activity relationship: X. Li, H. Deng,
B. Zhang, J. Li, L. Zhang, S. Luo, J.-P. Cheng, Chem. Eur. J.
2010, 16, 450–455.
[9] P. N. H. Huynh, R. R. Walvoord, M. C. Kozlowski, J. Am.
Chem. Soc. 2012, 134, 15621–15623.
[10] N. J. A. Martin, L. Ozores, B. List, J. Am. Chem. Soc. 2007,
129, 8976–8977.
[11] G. Hilt, F. Pünner, J. Möbus, V. Naseri, M. A. Bohn, Eur. J.
Org. Chem. 2011, 5962–5966.
[12] a) G. Hilt, A. Nödling, Eur. J. Org. Chem. 2011, 7071–7075; b)
A. R. Nödling, K. Müther, V. H. G. Rohde, G. Hilt, M. Oest-
reich, Organometallics 2014, 33, 302–308.
[13] a) S. Fukuzumi, K. Ohkubo, Chem. Eur. J. 2000, 6, 4532–4535;
b) K. Okhubo, T. Suenobu, H. Imohori, A. Orita, J. Otera,
S. Fukuzumi, Chem. Lett. 2001, 978–979; c) S. Fukuzumi, K.
Ohkubo, J. Am. Chem. Soc. 2002, 124, 10270–10271.
[14]
U. Mayer, V. Gutmann, W. Gerger, Monatsh. Chem. 1975, 106,
1235–1257.
M. A. Beckett, G. C. Strickland, J. R. Holland, K. S. Varma,
Polymer 1996, 37, 4629–4631.
[15]
[16] For recent examples with the use of the Gutmann–Beckett
method, see: a) G. J. P. Britovsek, J. Ugolotti, A. J. P. White,
Organometallics 2005, 24, 1685–1691; b) G. C. Welch, L. Cab-
rera, P. A. Chase, E. Hollink, J. D. Masuda, P. Wei, D. W. Ste-
phan, Dalton Trans. 2007, 3407–3414; c) A. E. Ashley, T. J.
Herrington, G. G. Wildgoose, H. Zaher, A. L. Thompson,
N. H. Rees, T. Krämer, D. O’Hare, J. Am. Chem. Soc. 2011,
133, 14727–14740; d) M. Mewald, R. Fröhlich, M. Oestreich,
Chem. Eur. J. 2011, 17, 9406–9414; e) A. Schnurr, M. Bolte,
H.-W. Lerner, M. Wagner, Eur. J. Inorg. Chem. 2012, 112–120.
[17] B. Vakulya, S. Varga, A. Csámpai, T. Soós, Org. Lett. 2005, 7,
1967–1969.
[18] R. P. Herrera, V. Sgarzani, L. Bernardi, A. Ricci, Angew. Chem.
Int. Ed. 2005, 44, 6576–6579; Angew. Chem. 2005, 117, 6734–
6737.
[6] Physical-organic studies on the reactivity of hydrogen-bond-
donor catalysts: a) K. H. Jensen, M. S. Sigman, Angew. Chem.
[19] A. A. Rodriguez, H. Yoo, J. W. Ziller, K. J. Shea, Tetrahedron
Lett. 2009, 50, 6830–6833.
Int. Ed. 2007, 46, 4748–4750; Angew. Chem. 2007, 119, 4832– [20] a) P. Job, Compt. Rend. 1925, 180, 928–930; b) P. Job, Ann.
4834; b) J. Du, Z. Li, D.-M. Du, J. Xu, ARKIVOC 2008, xvii,
145–156; c) K. H. Jensen, M. S. Sigman, J. Org. Chem. 2010,
75, 7194–7201; d) K. C. Harper, M. S. Sigman, J. Org. Chem.
2013, 78, 2813–2818; see also ref.[7–9] for studies focusing on
thioureas.
Chim. Appl. 1928, 9, 113–203.
[21] K. N. Houk, R. W. Strozier, J. Am. Chem. Soc. 1973, 95, 4094–
4096.
[22] P. Laszlo, M. Teston-Henry, Tetrahedron Lett. 1991, 32, 3837–
3838.
[7] a) pKa values: G. Jakab, C. Tancon, Z. Zhang, K. M. Lippert,
P. R. Schreiner, Org. Lett. 2012, 14, 1724–1727; b) for a detailed
Received: July 7, 2014
Published Online: September 10, 2014
6398
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 6394–6398