10.1002/adsc.201800886
Advanced Synthesis & Catalysis
Acknowledgements
We thank the financial support from RGC General Research Fund
of HKSAR (CUHK 14304417) and The Chinese University of
Hong Kong Direct Grant (4053268). Equipment was partially
supported by the Faculty Strategic Fund for Research from the
Faculty of Science of the Chinese University of Hong Kong,
China.
References
[1] a) R. S. Shank, H. Shechter, J. Org. Chem. 1959, 24,
1825; b) E. LeGoff, J. Org. Chem. 1964, 46, 4323; c) R.
J. Rawson, I. T. Harrison, J. Org. Chem. 1970, 35,
2057; d) K. Takai, T. Kakiuchi, K. Utimoto, J. Org.
Chem. 1994, 59, 2671; e) A. B. Charette, S. Francoeur,
J. Martel, N. Wilb, Angew. Chem. Int. Ed., 2000, 39,
4539; f) M.-C. Lacasse, C. Poulard, A. B. Charette, J.
Am. Chem. Soc., 2005, 127, 12440; g) A. Voituriez, A.
B. Charette, Adv. Synth. Catal., 2006, 348, 2363; h) A.
Voituriez, L. E. Zimmer, A. B. Charette, J. Org. Chem.
2010, 75, 1244. For selected reviews, see: i) H. Lebel,
J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev.
2003, 103, 977−1050; j) O. G. Kulinkovich, Chem. Rev.
2003, 103, 2597−2632.
[2] a) A. D. Walsh, Nature 1947, 159, 165; b) R. Robinson,
Nature 1947, 159, 400; c) C. A. McDowell, Nature
1947, 159, 508; d) A. D. Walsh, Nature 1947, 159, 712;
e) R. Robinson, Nature 1947, 160, 162; f) J. W. Linnett,
Nature 1947, 160, 162; g) A. D. Walsh, Trans. Faraday
Soc. 1949, 45, 179; h) W. A. Bernett, J. Chem. Edu.
1967, 44, 17; i) A. de Meijere, Angew. Chem. Int. Ed.
1979, 18, 809; j) K. B. Wiberg, Acc. Chem. Res. 1996,
29, 229-234.
[3] a) P. D. Pohlhaus, S. D. Sanders, A. T. Parsons, W. Li,
J. S. Johnson, J. Am. Chem. Soc. 2008, 130, 8642; b)
H.-U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151;
c) M. Yu, B. L. Pagenkopf, Tetrahedron 2005, 61, 321;
d) F. De Simone, J. Waser, Synthesis, 2009, 20, 3353;
e) F. de Nanteuil, F. De Simone, R. Frei, F. Benfatti, E.
Serrano, J. Waser, Chem. Commun. 2014, 50, 10912; f)
T. F. Schneider, J. Kaschel, D. B. Werz, Angew. Chem.
Int. Ed. 2014, 53, 5504; g) M. A. Cavitt, L. H. Phun, S.
France, Chem. Soc. Rev. 2014, 43, 804; h) H. K. Grover,
M. R. Emmett, M. A. Kerr, Org. Biomol. Chem. 2015,
13, 655.
Scheme 2. A Plausible Mechanism of Bromolactonization
of 1.
Experimental Section
General Procedure for the Bromolactonization of
Cyclopropylmethyl Diester 1.
[4] a) H. Zhao, X. Fan, J. Yu, C. Zhu, J. Am. Chem. Soc.
2015, 137, 3490; b) S. Ren, C. Feng, T.-P. Loh, Org.
Biomol. Chem. 2015, 13, 5105.
Cyclopropylmethyl diester 1 (0.05 mmol, 1.0 equiv), the
chalcogenide catalyst (0.005 mmol, 0.1 equiv) and H2O
(0.9 L, 0.05 mmol) were added to dichloromethane (1
o
mL) at 25 C. Subsequently, NBS (0.1 mmol, 2.0 equiv)
[5] a) N. V. Zvk, A. Y. Gavrilova, O. B. Bondarenko, O. A.
Mukhina, V. N. Tikhanushkina, Russ. J. Org. Chem.
2011, 47, 340; b) C. Rosner, U. Hennecke, Org. Lett.
2015, 17, 3226; c) Y.-C. Wong, Z. Ke, Y.-Y. Yeung,
Org. Lett. 2015, 17, 4944-4947; d) Z. Ke, Y.-C. Wong,
J. Y. See, Y.-Y. Yeung, Adv. Synth. Catal. 2016, 358,
1719-1724.
was added into the reaction mixture. The reaction was then
stirred at 25 °C in the absence of light. Upon completion,
saturated aqueous solution of Na2SO3 (0.5 mL) was added
to quench the reaction. The mixture was further diluted
with DI water (2 mL) and extracted with CH2Cl2 (3 × 5 ml).
The organic extracts were combined, dried over anhydrous
MgSO4, filtered, and concentrated under reduced pressure.
The residue was purified over silica gel chromatography
with eluent n-hexane/diethyl ether (3:1) to yield the
corresponding cyclized product 2 or 3.
[6] a) S. M. Banik, K. M. Mennie, E. N. Jacobsen, J. Am.
Chem. Soc. 2017, 139, 9152; b) N. O. Ilchenko, M.
Hedberg, K. J. Szabꢀ, Chem. Sci. 2017, 8, 1056.
5
This article is protected by copyright. All rights reserved.