6508 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 22
Krysˇtof et al.
(21) Tetsu, O.; McCormick, F. Proliferation of cancer cells despite CDK2
inhibition. Cancer Cell 2003, 3, 233-245.
(22) Ljungman, M.; Paulsen, M. T. The cyclin-dependent kinase inhibitor
roscovitine inhibits RNA synthesis and triggers nuclear accumulation
of p53 that is unmodified at Ser15 and Lys382. Mol. Pharmacol.
2001, 60, 785-789.
using appropriately diluted gene specific amplicons ranging between
30 and 1 000 000 copies per reaction. Each sample was analyzed
in duplicate. Positive and negative controls were also incorporated
into each experiment to evaluate reproducibility and possible sample
contamination during the PCR procedure.
(23) Chao, S.-H.; Price, D. H. Flavopiridol inactivates P-TEFb and blocks
most RNA polymerase II transcription in vivo. J. Biol. Chem. 2001,
276, 31793-31799.
(24) Demidenko, Z. N.; Blagosklonny, M. V. Flavopiridol induces p53
via initial inhibition of Mdm2 and p21 and, independently of p53,
sensitizes apoptosis-reluctant cells to tumor necrosis factor. Cancer
Res. 2004, 64, 3653-3660.
(25) Whittaker, S. R.; Walton, M. I.; Garrett, M. D.; Workman, P. The
cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits
retinoblastoma protein phosphorylation, causes loss of cyclin D1,
and activates the mitogen-activated protein kinase pathway. Cancer
Res. 2004, 64, 262-272.
(26) MacCallum, D. E.; Melville, J.; Frame, S.; Watt, K.; Anderson, S.;
Gianella-Borradori, A.; Lane, D. P.; Green, S. R. Seliciclib (CYC202,
R-roscovitine) induces cell death in multiple myeloma cells by
inhibition of RNA polymerase II-dependent transcription and down-
regulation of Mcl-1. Cancer Res. 2005, 65, 5399-5407.
(27) Lacrima, K.; Valentini, A.; Lambertini, C.; Taborelli, M.; Rinaldi,
A.; Zucca, E.; Catapano, C.; Cavalli, F.; Gianella-Borradori, A.;
MacCallum, D. E.; Bertoni, F. In vitro activity of cyclin-dependent
kinase inhibitor CYC202 (Seliciclib, R-roscovitine) in mantle cell
lymphomas. Ann. Oncol. 2005, 16, 1169-1176.
(28) Shan, B.; Zhuo, Y.; Chin, D.; Morris, C. A.; Morris, G. F.; Lasky,
J. A. Cyclin-dependent kinase 9 is required for tumor necrosis factor-
R-stimulated matrix metalloproteinase-9 expression in human lung
adenocarcinoma Cells. J. Biol. Chem. 2005, 280, 1103-1111.
(29) Havlicek, L.; Fuksova, K.; Krystof, V.; Orsag, M.; Vojtesek, B.;
Strnad, M. 8-Azapurines as new inhibitors of cyclin-dependent
kinases. Bioorg. Med. Chem. 2005, 13, 5399-5407.
(30) Havlicek, L.; Hanus, J.; Vesely, J.; Leclerc, S.; Meijer, L.; Shaw,
G.; Strnad, M. Cytokinin-derived cyclin-dependent kinase inhibi-
tors: synthesis and cdc2 inhibitory activity of olomoucine and related
compounds. J. Med. Chem. 1997, 40, 408-412.
(31) Krystof, V.; Lenobel, R.; Havlicek, L.; Kuzma, M.; Strnad, M.
Synthesis and biological activity of olomoucine II. Bioorg. Med.
Chem. Lett. 2002, 12, 3283-3286.
(32) Krystof, V.; McNae, I. W.; Walkinshaw, M. D.; Fischer, P. M.;
Muller, P.; Vojtesek, B.; Orsa´g, M.; Havlicek, L.; Strnad, M.
Antiproliferative activity of olomoucine II, a novel 2,6,9-trisubstituted
purine cyclin-dependent kinase inhibitor. Cell. Mol. Life Sci. 2005,
62, 1763-1771.
(33) Moravcova, D.; Krystof, V.; Havlicek, L.; Moravec, J.; Lenobel, R.;
Strnad, M. Pyrazolo[4,3-d]pyrimidines as new generation of cyclin-
dependent kinase inhibitors. Bioorg. Med. Chem. Lett. 2003, 13,
2989-2992.
(34) Moravec, J.; Krystof, V.; Hanus, J.; Havlicek, L.; Moravcova, D.;
Fuksova, K.; Kuzma, M.; Lenobel, R.; Otyepka, M.; Strnad, M.
2,6,8,9-Tetrasubstituted Purines as New CDK1 Inhibitors. Bioorg.
Med. Chem. Lett. 2003, 13, 2993-2996.
(35) Pevarello, P.; Brasca, M. G.; Amici, R.; Orsini, P.; Traquandi, G.;
Corti, L.; Piutti, C.; Sansonna, P.; Villa, M.; Pierce, B. S.; Pulici,
M.; Giordano, P.; Martina, K.; Fritzen, E. L.; Nugent, R. A.; Casale,
E.; Cameron, A.; Ciomei, M.; Roletto, F.; Isacchi, A.; Fogliatto, G.;
Pesenti, E.; Pastori, W.; Marsiglio, A.; Leach, K. L.; Clare, P. M.;
Fiorentini, F.; Varasi, M.; Vulpetti, A.; Warpehoski, M. A. 3-Ami-
nopyrazole inhibitors of CDK2/Cyclin A as antitumor agents. 1. Lead
finding. J. Med. Chem. 2004, 47, 3367-3380.
(36) Pevarello, P.; Brasca, M. G.; Orsini, P.; Traquandi, G.; Longo, A.;
Nesi, M.; Orzi, F.; Piutti, C.; Sansonna, P.; Varasi, M.; Cameron,
A.; Vulpetti, A.; Roletto, F.; Alzani, R.; Ciomei, M.; Albanese, C.;
Pastori, W.; Marsiglio, A.; Pesenti, E.; Fiorentini, F.; Bischoff, J.
R.; Mercurio, C. 3-Aminopyrazole Inhibitors of CDK2/Cyclin A as
antitumor agents. 2. Lead optimization. J. Med. Chem. 2005, 48,
2944-2956.
(37) Knockaert, M.; Gray, N.; Damiens, E.; Chang, Y.-T.; Grellier, P.;
Grant, K.; Fergusson, D.; Mottram, J.; Soete, M.; Dubremetz, J.-F.;
Le Roch, K.; Doerig, C.; Schultz, P. G.; Meijer, L. Intracellular targets
of cyclin-dependent kinase inhibitors: identification by affinity
chromatography using immobilised inhibitors. Chem. Biol. 2000, 7,
411-422.
(38) McClue, S. J.; Blake, D.; Clarke, R.; Cowan, A.; Cummings, L.;
Fischer, P. M.; MacKenzie, M.; Melville, J.; Stewart, K.; Wang, S.;
Zhelev, N.; Zheleva, D.; Lane, D. P. In vitro and in vivo antitumor
properties of the cyclin dependent kinase inhibitor CYC202 (R-
roscovitine). Int. J. Cancer 2002, 102, 463-468.
Acknowledgment. The authors thank K. Faksova´, E. Hirn-
erova´, J. Hudcova´, and the screening group members at Cyclacel
for their contributions. B. Vojteˇsˇek is acknowledged for the gift
of antibodies and Sees-editing for English corrections. The work
was supported by GACR Grant 204/03/D231, MSMT Grant
6198959216, and SMOLBnet FAPESP 01/07532-0. W.F.A. is
a researcher for the Brazilian Council for Scientific and
Technological Development, CNPq.
Supporting Information Available: Data from the elemental
analyses, melting points, recrystallization solvents of newly prepared
compounds, references to previously known compounds, as well
as X-ray data are included. This material is available free of charge
References
(1) Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and
microprocessors. Annu. ReV. Cell DeV. Biol. 1997, 13, 261-291.
(2) Sherr, C. J. Cancer cell cycles. Science 1996, 274, 1672-1677.
(3) Sielecki, T. M.; Boylan, J. F.; Benfield, P. A.; Trainor, G. L. Cyclin-
dependent kinase inhibitors: useful targets in cell cycle regulation.
J. Med. Chem. 2000, 43, 1-18.
(4) Dai, Y.; Grant, S. Cyclin-dependent kinase inhibitors. Curr. Opin.
Pharmacol. 2003, 3, 362-370.
(5) Fischer, P. M.; Lane, D. P. Inhibitors of cyclin-dependent kinases as
anti-cancer therapeutics. Curr. Med. Chem. 2000, 7, 1213-1245.
(6) Knockaert, M.; Greengard, P.; Meijer, L. Pharmacological inhibitors
of cyclin-dependent kinases. Trends Pharmacol. Sci. 2002, 23, 417-
425.
(7) Hirai, H.; Kawanishi, N.; Iwasawa, Y. Recent advances in the
development of selective small molecule inhibitors for cyclin-
dependent kinases. Curr. Top. Med. Chem. 2005, 5, 167-179.
(8) McInnes, C.; Fischer, P. M. Strategies for the design of potent and
selective kinase inhibitors. Curr. Pharm. Des. 2005, 11, 1845-1863.
(9) Fischer, P. M. The design of drug candidate molecules as selective
inhibitors of therapeutically relevant kinases. Curr. Med. Chem. 2004,
11, 1563-1583.
(10) Fischer, P. M.; Gianella-Borradori, A. Recent progress in the
discovery and development of CDK inhibitors. Expert Opin. InVest.
Drugs 2005, 14, 457-477.
(11) Benson, C.; Kaye, S.; Workman, P.; Garrett, M.; Walton, M.; de
Bono, J. Clinical anticancer drug development: targeting the cyclin-
dependent kinases. Br. J. Cancer 2005, 92, 7-12.
(12) Loyer, P.; Trembley, J. H.; Katona, R.; Kidd, V. J.; Lahti, J. M.
Role of CDK/cyclin complexes in transcription and RNA splicing.
Cell. Signalling 2005, 17, 1033-1051.
(13) Schang, L. M. Advances on cyclin-dependent kinases (CDKs) as
novel targets for antiviral drugs. Curr. Drug Targets: Infect. Disord.
2005, 5, 29-37.
(14) Fischer, P. M. Cyclin-dependent kinase inhibitors: discovery,
development and target rationale for different therapeutic applications.
Drugs Future 2005, 30, 911-929.
(15) Chao, S.-H.; Fujinaga, K.; Marion, J. E.; Taube, R.; Sausville, E.
A.; Senderowicz, A. M.; Peterlin, B. M.; Price, D. H. Flavopiridol
inhibits P-TEFb and blocks HIV-1 replication. J. Biol. Chem. 2000,
275, 28345-28348.
(16) Schang, L. M. Effects of pharmacological cyclin-dependent kinase
inhibitors on viral transcription and replication. Biochim. Biophys.
Acta 2004, 1697, 197-209.
(17) Agbottah, E.; de La Fuente, C.; Nekhai, S.; Barnett, A.; Gianella-
Borradori, A.; Pumfery, A.; Kashanchi, F. Antiviral Activity of
CYC202 in HIV-1-infected Cells. J. Biol. Chem. 2005, 280, 3029-
3042.
(18) Heredia, A.; Davis, C.; Bamba, D.; Le, N.; Gwarzo, M. Y.; Sadowska,
M.; Gallo, R. C.; Redfield, R. R. Indirubin-3′-monoxime, a derivative
of a Chinese antileukemia medicine, inhibits P-TEFb function and
HIV-1 replication. AIDS 2005, 19, 2087-2095.
(19) Fischer, P. M. The use of CDK inhibitors in oncology: a pharma-
ceutical perspective. Cell Cycle 2004, 3, 742-746.
(20) Ortega, S.; Prieto, I.; Odajima, J.; Martin, A.; Dubus, P.; Sotillo, R.;
Barbero, J. L.; Malumbres, M.; Barbacid, M. Cyclin-dependent kinase
2 is essential for meiosis but not for mitotic cell division in mice.
Nat. Genet. 2003, 35, 25-31.