7028
C.-J. Zheng et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7024–7028
15. Moellering, R. C. Clin. Infect. Dis. 2008, 46, 1032.
Table 5
16. Gualtieri, M.; Bastide, L.; Villain-Guillot, P.; Michaux-Charachon, S.; Latouche,
J.; Leonetti, J. P. J. Antimicrob. Chemother. 2006, 58, 778.
17. Sim, M. M.; Ng, S. B.; Buss, A. D.; Crasta, S. C.; Goh, K. L.; Lee, S. K. Bioorg. Med.
Chem. Lett. 2002, 12, 697.
18. Petrikaite, V.; Tarasevicius, E.; Pavilonis, A. Medicina (Kaunas) 2007, 43, 657.
19. Sortino, M.; Delgado, P.; Juárez, S.; Quiroga, J.; Abonía, R.; Insuasty, B.;
Nogueras, M.; Rodero, L.; Garibotto, F. M.; Enriz, R. D.; Zacchino, S. A. Bioorg.
Med. Chem. 2007, 15, 484.
Cytotoxic activity of compounds Ib and IIIb against HeLa cell
a
Compound
IC50 (lg/mL)
Ib
IIIb
3.54
5.76
a
IC50 is the concentrations required to inhibit 50% of cell growth.
20. Murugan, R.; Anbazhagan, S.; Lingeshwaran, S.; Narayanan, S. Eur. J. Med. Chem.
2009, 44, 3272.
21. Chandrappa, S.; Kavitha, C. V.; Shahabuddin, M. S.; Vinaya, K.; Ananda, C. S.;
Ranganatha, S. R.; Raghavan, S. C.; Rangappa, K. S. Bioorg. Med. Chem. 2009, 17,
2576.
observed antibacterial activity was caused by selective toxicity to-
wards the bacterial cells and the results are shown in Table 5.33
Compounds Ib and IIIb did not affect cell viability on the Human
22. Brooke, E. W.; Davies, S. G.; Mulvaney, A. W.; Okada, M.; Pompeo, F.; Sim, E.;
Vickers, R. J.; Westwood, I. M. Bioorg. Med. Chem. 2003, 13, 2527.
23. Sumru, O.; Fusun, K.; Yag˘mur, T. Enzyme Inhib. Med. Chem. 2009, 24, 447.
24. Chandrappa, S.; Benaka, S. B.; Vinaya, K.; Ananda, C. S.; Thimmegowda, N. R.;
Rangappa, K. S. Invest. New Drugs 2008, 26, 437.
25. Rauter, A. P.; Padilha, M.; Figueiredo, J. A.; Ismael, M. I.; Justino, J.; Ferreira, H.;
Ferreira, M. J.; Rajendran, C.; Wilkins, R.; Vaz, P. D.; Calhorda, M. J. J. Carbohydr.
Chem. 2005, 24, 275.
26. Ergenç, N.; Capan, G.; Günay, N. S.; Ozkirimli, S.; Güngör, M.; Ozbey, S.; Kendi,
E. Arch. Pharm. (Weinheim) 1999, 332, 343.
27. Verma, A.; Saraf, S. K. Eur. J. Med. Chem. 2008, 43, 897.
28. Xu, L. L.; Zheng, C. J.; Sun, L. P.; Miao, J.; Piao, H. R. Eur. J. Med. Chem. 2012, 48,
174.
29. Song, M.X.; Zheng, C.J.; Deng, X.Q.; Wang, Q.; Hou, S.P.; Liu, T.T.; Xing, X.L.; Piao
cervical (HeLa) cells at their MICs (1 or 2 lg/mL) but showed cyto-
toxicity at much higher concentrations. The inconsistency of com-
pounds Ib and IIIb between their antibacterial activity and
cytotoxicity suggests that there may be an antibacterial mecha-
nism different from cytotoxicity.
In summary, we have synthesized three new series of 5-aryloxy
pyrazole derivatives (I–III) and evaluated their antibacterial activ-
ities against Gram-positive and Gram-negative bacterias. The
majority of the synthesized compounds showed potent inhibitory
activity against Gram-positive bacteria S. aureus 4220, especially
against the strains of multidrug-resistant clinical isolates
(MRSA3167/3506 and QRSA3505/3519). Among which compounds
IIIb, IIIg and IIIm showed the most potent levels of activity
30. Hardej, D.; Ashby, C. R.; Khadtare, N. S.; Kulkarni, S. S.; Singh, S.; Talele, T. T. Eur.
J. Med. Chem. 2010, 45, 5827.
31. Preparation of IIIb: A mixture of 4b (104 mg, 3 mmol), appropriate rhodanine-
3-aromatic acid (96 mg, 3 mmol), 10 drops glacial acetic acid and 10 drops
piperidine in ethanol (20 mL) was refluxed for 4 h. After cooling, the solvent
was evaporated in vacuo, followed by the purification of the resulting residue
by silica gel column chromatography (dichloromethane/methanol, 100:1) to
afford IIIb (344 mg, 53%) as yellow solid. Mp: 185–187 °C. IR (KBr) cmÀ1: 3406
(OH), 3074 (NH), 1712 (C@O). 1H NMR (DMSO-d6, 300 MHz, ppm): d 2.43 (s,
3H, CH3), 3.56–3.73 (m, 2H, CHCH2), 5.55 (br s, 1H, CH2CH), 6.63–7.69 (m, 14H,
Ar-H), 10.68 (s, 1H, NH), 12.51 (s, 1H, COOH). 13C NMR (DMSO-d6, 300 MHz,
ppm): d 193.92, 172.17, 169.46, 166.75, 150.48, 149.95, 143.69, 136.14, 135.94,
130.38, 129.34, 128.75, 128.47, 128.29, 127.25, 122.75, 122.43, 122.23, 120.98,
120.63, 119.82, 118.09, 117.03, 116.34, 111.26, 105.00, 61.25, 21.29, 12.92. MS
(APCI) m/z 649 (M+1). Anal. Calcd. for C31H22Cl2N4O4S2: C, 57.32; H, 3.41; N,
8.63. Found: C, 57.15; H, 3.34; N, 8.76.
32. Anti-bacterial activity assay: The micro-organisms used in the present study
were S. aureus (S. aureus RN 4220, S. aureus KCTC 209, S. aureus KCTC 503), and
Escherichia coli (E. coli 1356). The strains of multidrug-resistant clinical isolates
were methicillin-resistant Staphylococcus aureus (MRSA CCARM 3167 and MRSA
CCARM 3506) and quinolone-resistant Staphylococcus aureus (QRSA CCARM
3505 and QRSA CCARM 3519). Clinical isolates were collected from various
patients hospitalized in several clinics. The in vitro anti-bacterial activity was
evaluated using a 96-well microtiter plate and a serial dilution method to
obtain the Minimum Inhibitory Concentration (MIC) with different strains
including multidrug-resistant clinical isolates. Oxacillin and norfloxacin were
used as positive controls. Test bacteria were grown to mid-log phase in
Mueller-Hinton broth (MHB) and diluted 1000-fold in the same medium. The
bacteria of 105 CFU/mL were inoculated into MHB and dispensed at 0.2 mL/
(MIC = 1 lg/mL) against all of the multidrug-resistant clinical iso-
lates tested. Compounds Ib and IIIb were evaluated for their cyto-
toxicity and exhibited no significant influence on cell viability in
the HeLa cells at their MICs. The mechanism of action of these com-
pounds remains unknown and efforts to establish the cause of their
antibacterial activity are currently underway in our laboratories
and will be reported in due course.
Acknowledgment
This work was supported by the National Science Foundation of
China (Grant number 20962021).
References and notes
1. Leeb, M. Nature 2004, 431, 892.
2. Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki,
K.; Ito, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J. J. Med. Chem. 2004,
47, 3693.
3. Güniz, K. S.; Rollas, S.; Erdeniz, H.; Kiraz, M.; Cevdet, E. A.; Vidin, A. Eur. J. Med.
Chem. 2000, 35, 761.
4. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.;
Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris,
J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert,
D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
5. Bekhit, A. A.; Fahmy, H. T.; Rostom, S. A.; Baraka, A. M. Eur. J. Med. Chem. 2003,
38, 27.
6. Manfredini, S.; Bazzanini, R.; Baraldi, P. G.; Guarneri, M.; Simoni, D.; Marongiu,
M. E.; Pani, A.; Tramontano, E.; La, C. P. J. Med. Chem. 1992, 35, 917.
7. Manfredini, S.; Bazzanini, R.; Baraldi, P. G.; Bonora, M.; Marangoni, M.; Simoni,
D.; Pani, A.; Scintu, F.; Pinna, E.; Pisano, L.; La, C. P. Anti-Cancer Drug Des. 1996,
11, 193.
well in
norfloxacin were used. Test compounds were prepared in DMSO, the final
concentration of which did not exceed 0.05%. twofold serial dilution
technique was used to obtain final concentrations of 64-0.5 g/mL. The MIC
a 96-well microtiter plate. As positive controls, oxacillin and
A
l
was defined as the concentration of a test compound that completely inhibited
bacteria growth during 24 h incubation at 37 °C. Bacteria growth was
determined by measuring the absorption at 650 nm using
a microtiter
enzyme-linked immunosorbent assay (ELISA) reader. All experiments were
carried out three times.
33. Cytotoxic activity assay: Human cervical (Hela) cell monolayers were used as an
in vitro model of cervicovaginal epithelium for testing the cytotoxicity of the
new compounds. Hela cells were grown in Dulbecco modified Eagle medium
supplemented with fetal bovine serum (10%), and antibiotics (penicillin-
streptomycin mixture [100 U/mL]). Cells at 80–90% confluence were split by
trypsin (0.25% in PBS; pH 7.4), and the medium was changed at 24 h intervals.
The cells were cultured at 37 °C in a 5% CO2 incubator. The cells were grown to
3 passages and approximately 1 Â 104 cells were seeded into each well of a 96-
well plate and allowed to incubate overnight to allow cells to attach to the
substrate. After 24 h, the medium was replaced with DMEM supplemented
with 10% FBS containing various concentrations of test compounds and
8. Park, H. J.; Lee, K.; Park, S. J.; Ahn, B.; Lee, J. C.; Cho, H.; Lee, K. I. Bioorg. Med.
Chem. Lett. 2005, 15, 3307.
9. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter,
S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier,
D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.;
Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.;
Isakson, P. C. J. Med. Chem. 1997, 40, 1347.
10. Menozzi, G.; Mosti, L.; Fossa, P.; Mattioli, F.; Ghia, M. J. Heterocycl. Chem. 1997,
34, 963.
11. Sridhar, R.; Perumal, P. T.; Etti, S.; Shanmugam, G.; Ponnuswamy, M. N.;
Prabavathy, V. R.; Mathivanan, N. Bioorg. Med. Chem. Lett. 2004, 14, 6035.
12. Kees, K. L.; Fitzgerald, J. J.; Steiner, K. E.; Mattes, J. F.; Mihan, B.; Tosi, T.;
Mondoro, D.; McCaleb, M. L. J. Med. Chem. 1996, 39, 3920.
13. Bebernitz, G. R.; Argentieri, G.; Battle, B.; Brennan, C.; Balkan, B.; Burkey, B. F.;
Eckhardt, M.; Gao, J.; Kapa, P.; Strohschein, R. J.; Schuster, H. F.; Wilson, M.; Xu,
D. D. J. Med. Chem. 2001, 44, 2601.
incubated for 48 h. Then 10
each well. After incubation for 4 h, the medium was removed and the resulting
formazan crystals were dissolved with 100 l DMSO. After shaking 10 min, the
ll of MTT solution (5 mg/mL in PBS) was added to
l
optical density was measured at 570 nm using a microtiter ELISA reader. The
assay was conducted four times. The IC50 values were defined as the
concentrations inhibiting 50% of cell growth.
14. Comber, R. N.; Gray, R. J.; Secrist, J. A. Carbohydr. Res. 1992, 216, 441.