The Journal of Organic Chemistry
Note
over Na2SO4, and evaporated to dryness. The residue was purified by
flash column chromatography (3:10 EtOAc/hexane) to get S6 (0.2 g,
60%) as a colorless oil. H NMR (400 Hz, CDCl3, δ): 7.45−7.29
(20H, m, Ar−H), 5.02−4.64 (8H, m, CH2), 4.58 (1H, d, J = 8, CH,
H1), 3.86−3.48 (6H, m, CH, CH2, ring CH), 2.60 (1H, s, OH). 13C
NMR (100 Hz, CDCl3, δ): 138.6, 138.3, 137.5, 128.1, 127.8, 102.5,
84.3, 84.1, 83.8, 82.5, 81.7, 81.4, 77.3, 77.0, 76.7, 75.2, 74.7, 74.1, 73.6,
717, 71.3, 71.1, 70.2. HRMS (ESI): calcd for 13CC33H36O6Na [M +
Na]+, 564.2433; measured, 564.2465.
Basic Energy Sciences under Award DE-SC0000997. The work
by J.C.D. was supported in part by the National Science
Foundation EFRI (0938033-DGE).
1
REFERENCES
■
(1) Mohan, D.; Pittman, C. U.; Steele, P. H. Energy Fuels 2006, 20,
848−889.
(2) Mettler, M. S.; Vlachos, D. G.; Dauenhauer, P. J. Energy Environ.
Sci. 2012, 5, 7797−7809.
2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl-(1−4)-1,2,3,6-
tetra-O-benzyl-3-13C-β-D-glucopyranoside (S8).22 To a solution
of S6 (0.1 g, 0.18 mmol) and S7 (0.12 g, 0.18 mmol) in anhydrous
CH2Cl2 (5 mL) was added BF3·Et2O (3 μL, 0.018 mmol) at −72 °C.
After the solution was stirred at −72 °C for 1 h, the reaction mixture
was neutralized with triethylamine. The residue was purified by flash
column chromatography (1:8 EtOAc/hexane) to give S8 as a 1:3
(3) Mayes, H. B.; Broadbelt, L. J. J. Phys. Chem. A 2012, 116, 7098−
7106.
(4) Hurt, M. R.; Degenstein, J. C.; Gawecki, P.; Borton, D. J., II;
Vinueza, N. R.; Yang, L.; Agrawal, R.; Delgass, W. N.; Ribeiro, F. H.;
Kenttamaa, H. I. Anal. Chem. 2013, 85, 10927−10934.
̈
(5) Yoneda, Y.; Kawada, T.; Rosenau, T.; Kosma, P. Carbohydr. Res.
2005, 340, 2428−2435.
1
mixture of α and β isomers (0.12 g, 55%) as a colorless syrup. H
(6) Zheng, S.; Laraia, L.; O’Connor, C. J.; Sorrell, D.; Tan, Y. S.; Xu,
Z.; Venkitaraman, A. R.; Wu, W.; Spring, D. R. Org. Biomol. Chem.
2012, 10, 2590−2593.
NMR (400 Hz, CDCl3, δ): 7.42−7.19 (40H, m, Ar−H), 5.15−4.46
(18H, m, CH, PhCH2, H1, H1′), 3.92−3.35 (12H, m, CH, CH2, ring
CH). 13C NMR (100 Hz, CDCl3, δ): 139.3, 138.6, 137.6, 128.3, 127.8,
127.5, 102.4, 84.8, 83.1, 78.0, 77.3, 76.7, 75.5, 74.9, 73.2, 70.9, 69.0,
68.2. HRMS (ESI): calcd for 13CC68H70O11Na [M + Na]+, 1086.4849;
measured, 1086.4846.
(7) Laboratory pyrolysis reactors generally utilize heated surfaces in
combination with heated gaseous environments.
(8) Mettler, M. S.; Paulsen, D.; Vlachos, D. G.; Dauenhauer, P. J.
Green Chem. 2012, 14, 1284−1288.
Glucopyranosyl[3-13C]glucose (S9).22 A solution of S8 (0.12 g,
1.15 mmol) in MeOH (10 mL) was hydrogenated in the presence of
10% Pd/C (15 mg) at atmospheric pressure at RT for 36 h. After the
catalyst was filtered off, the reaction mixture was evaporated to give S9
(α:β = 1:3, 34 mg, 87%) as a colorless solid. 1H NMR (400 Hz, D2O,
δ): 4.56 (1H, d, J = 8, CH, H1′), 4.41 (1H, d, J = 8, CH, H1), 3.83−
3.15 (12H, m, CH, CH2, ring CH). 13C NMR (100 Hz, D2O, δ):
103.1, 96.3, 92.4, 76.8, 76.6, 76.1, 75.4, 74.9, 74.6, 73.8, 72.1, 70.7,
70.0, 61.0, 60.5. HRMS (ESI): calcd for 13CC11H22O11Na [M + Na]+,
366.1060; measured, 366.1068.
(9) Patwardhan, P. R.; Satrio, J. A.; Brown, R. C.; Shanks, B. H. J.
Anal. Appl. Pyrolysis 2009, 86, 323−330.
(10) Mayes, H. B.; Nolte, M. W.; Beckham, G. T.; Shanks, B. H.;
Broadbelt, L. J. ACS Sustainable Chem. Eng. 2014, 2, 1461−1473.
(11) Seshadri, V.; Westmoreland, P. R. J. Phys. Chem. A 2012, 116,
11997−12013.
(12) Paine, J. B., III; Pithawalla, Y. B.; Naworal, J. D. J. Anal. Appl.
Pyrolysis 2008, 82, 10−41.
(13) Hosoya, T.; Nakao, Y.; Sato, H.; Kawamoto, H.; Sakaki, S. J.
Org. Chem. 2009, 74, 6891−6894.
(14) Zhou, X.; Nolte, M.; Mayes, H. B.; Shanks, B. H.; Broadbelt, L.
J. Ind. Eng. Chem. Res. 2014, 53, 13274−13289.
(15) Vinu, R.; Broadbelt, L. J. Energy Environ. Sci. 2012, 5, 9808−
9826.
(16) Frisch, M. J., et al. Gaussian 09, revision D.01; Gaussian, Inc.:
Wallingford, CT, 2009.
Glucopyranosyl[5-13C]glucose (S17).22 The same synthesis
strategy as described above for S9 was employed for the synthesis of
glucopyranosyl[5-13C]glucose (S17). A solution of S16 (0.12 g, 1.15
mmol) in MeOH (10 mL) was hydrogenated in the presence of 10%
Pd/C (15 mg) at atmospheric pressure at RT for 36 h. After the
catalyst was filtered off, the reaction mixture was evaporated to give
S17 (α:β = 1:3, 34 mg, 87%) as a colorless solid. 1H NMR (500 MHz,
D2O, δ): 4.56 (1H, d, J = 5, CH, C1′), 4.41 (1H, d, J = 5, CH, C1),
3.83−3.15 (12H, m, CH, CH2, ring CH). 13C NMR (125 MHz, D2O,
δ): 102.5, 95.6, 91.7, 78.8, 78.5, 78.3, 75.9, 75.4, 74.7, 74.2, 73.8, 71.7,
71.2, 71.1, 70.0, 69.4, 60.5, 60.1, 59.9. HRMS (ESI): calcd for
13CC11H22O11Na [M + Na]+, 366.1060; measured, 366.1066.
(17) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys.
1980, 72, 650−654.
(18) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−241.
(19) It is well-known that ethenediol converts readily into its
tautomer glycolaldehyde; therefore, β-D-glucopyranosylethenediol was
assumed to readily tautomerize to β-D-glucopyranosylglycolaldehyde.
(20) Kim, S.; Song, S.; Lee, T.; Jung, S.; Kim, D. Synthesis 2004,
847−850.
ASSOCIATED CONTENT
* Supporting Information
NMR spectra, tables of cartesian coordinates, and complete ref
16. This material is available free of charge via the Internet at
■
S
(21) Pulsipher, A.; Yousaf, M. N. Chem. Commun. 2011, 47, 523−
525.
(22) Malz, F.; Yoneda, Y.; Kawada, T.; Mereiter, K.; Kosma, P.;
Rosenau, T.; Jager, C. Carbohydr. Res. 2007, 342, 65−70.
̈
AUTHOR INFORMATION
Corresponding Author
■
Present Address
§J.G.: Department of Chemistry and Biochemistry and Center
for Quantitative Obesity Research, Montclair State University,
Montclair, NJ 07043.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors gratefully acknowledge partial financial support by
the Center for Direct Catalytic Conversion of Biomass to
Biofuels (C3Bio), an Energy Frontier Research Center funded
by the U.S. Department of Energy, Office of Science, Office of
1914
J. Org. Chem. 2015, 80, 1909−1914