138
H. Agirbas et al. / Journal of Molecular Structure 892 (2008) 132–139
Table 4
Geometric and electronic values of reactants, intermediates, transition states and product
1+2
TS1
1n_1
1n_1a
TS2
1n_2
In_3
TS3
3
0
Bond length (ÅA)
C3–C9
1.516
1.513
1.504
1.501
1.075
1.074
1.550
1.477
1.389
1.385
0.977
1.522
1.912
1.065
1.070
1.505
1.193
2.820
1.033
2.033
1.502
1.513
1.081
1.075
1.474
1.438
1.388
1.382
0.965
1.359
1.890
1.070
1.072
1.515
1.515
4.319
3.866
1.301
1.505
1.516
1.518
1.079
1.082
1.478
1.415
1.392
1.368
C9–H10
C9–H27
C9–N13
N13–C14
C3–C2
1.078
1.080
1.479
1.407
1.388
1.391
0.965
2.950
1.865
1.074
1.076
1.486
1.163
1.954
1.001
2.912
1.077
1.075
1.520
1.450
1.389
1.386
0.965
1.986
1.891
1.069
1.072
1.494
1.167
2.206
1.009
2.498
1.076
1.074
1.536
1.476
1.388
1.384
0.965
1.561
1.927
1.068
1.069
1.506
1.192
2.400
1.020
2.343
1.078
1.072
1.536
1.472
1.386
1.385
0.969
1.452
1.890
1.071
1.073
1.50826
1.19440
3.362
1.263
1.688
1.083
1.078
1.489
1.430
1.426
1.282
1.081
1.082
1.478
1.377
1.423
1.291
C2–O11
O11–H12
C25–N13
C31–Cl34
C31–H32
C31–H33
C31–C25
C25–O35
C25–Cl26
N13–H24
Cl26–H24
C31–O11
1.361
1.934
1.069
1.071
1.510
1.220
1.377
2.045
1.056
1.063
1.509
1.215
1.379
3.000
1.066
1.074
1.520
1.216
2.600
2.235
1.468
Mulliken charges
C3
C9
H10
H27
N13
C14
C2
O11
H12
C25
C31
H32
H33
O35
Cl26
–0.101
–0.180
0.238
0.252
–0.902
0.344
0.388
–0.758
0.409
0.515
–0.674
0.385
0.328
–0.431
–0.173
5.75
–0.114
–0.219
0.259
0.288
–0.849
0.259
0.396
–0.759
0.417
0.692
–0.611
0.345
0.354
–0.506
–0.506
8.27
–0.120
–0.218
0.278
0.323
–0.927
0.272
0.401
–0.766
0.429
–0.130
–0.224
0.279
0.324
–0.952
0.258
0.390
–0.771
0.447
0.817
–0.616
0.349
0.366
–0.092
–0.794
9.18
–0.121
–0.215
0.273
0.311
–0.965
0.250
0.422
–0.763
0.433
0.829
ꢀ0.662
0.351
0.344
ꢀ0.497
–0.648
6.18
–0.098
–0.151
0.247
0.270
–0.971
0.303
0.400
–0.774
0.423
0.912
–0.657
0.324
0.315
–0.614
–0.260
4.73
–0.182
–0.156
0.205
0.248
–0.964
0.317
–0.179
–0.156
0.220
0.230
–1.003
0.372
–0.080
–0.215
0.228
0.357
–1.010
0.383
0.488
–0.819
0.477
–0.807
0.430
–0.743
0.768
0.918
–0.588
0.377
0.281
–0.640
–0.217
6.24
0.960
–0.423
0.294
0.321
–0.652
–0.375
6.62
0.910
–0.214
0.328
ꢀ0.566
0.316
0.366
0.260
ꢀ0.531
–0.708
11.317
–0.639
–0.911
14.04
Dipole moment (D)
Bond angles (°)
1+2
TS1
1n_1
1n_1a
TS2
1n_2
C9–N13–H24
C9–N13–C14
C9–N13–C25
N13–H24–Cl26
112.91
120.85
116.64
118.94
108.56
112.96
118.47
107.30
In_3
106.25
111.51
113.18
106.66
107.76
112.43
114.03
137.10
TS3
110.08
110.53
114.92
171.45
116.69
115.96
125.57
136.08
3
C14–C18–O15
C14–C18–Cl32
C14–C18–H31
C14–C18–H30
83.50
107.84
108.45
113.13
76.07
103.55
111.03
121.97
105.80
91.05
107.88
115.05
[13] W.J. Hehre, L. Radom, P.P.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital
Theory, Wiley, New York, 1986.
Acknowledgement
[14] J.B. Foresman, A. Frisch, Exporing Chemistry with Electronic Structure
Methods, second ed., Gaussian Inc, Pittsburg, PA, 1996.
The authors thank Kocaeli University Research Fund for finan-
cial support (Grant No. 2004/34).
[15] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima,Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala,
K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Revision B.05, Gaussian, Inc.,Wallingford CT, 2004.
[16] A.I. Vogel, Practical Organic Chemistry, Longman, London, 1972.
[17] M.E. Derieg, L.H. Sternbach, J. Heterocycl. Chem. 3 (1966) 237.
[18] Y. Davion, G. Guillaumet, J.-M. Leger, C. Jarry, B. Lesur, J.-Y. Merour,
Heterocycles 63 (5) (2004) 2004.
References
[1] T. Hirohashi, T. Izumi, H. Yamamoto, Ger. Offen. 2, 014, 223(Cl. C 07d) (1970).
[2] F. Okada, Y. Torii, H. Saito, N. Matsuki, Jpn. J. Pharmacol. 2 (64) (1994) 109.
[3] R.A. Mueller, Ger. Offen. 2,700,091 (Cl. C07D413/12) (1977).
[4] R.C. Effland, G.C. Helsley, J.J. Tegeler, J. Heterocyclic. Chem. (1982) 537.
[5] A.D. Cale , B.V. Franko, C.A. Leonard, Eur. Pat. Appl.EP107, 930(Cl. C07D267/14)
(1984).
[6] T. Tatsuoka, K. Nomura, M. Shibata, M. Kawai, Eur. Pat. Appl. EP 468,562 (Cl.
C07D417/06) (1992).
[7] J. Himizu, A. Ishida, K. Yoshikawa, Japan 72 48,380 (Cl. C07cd, A61k) (1970).
[8] K. Schenker, Swiss 505, 850 (Cl. C07d) (1968).
[9] J. Nichimizu, A. Ishida, K. Yoshikawa, T. Tokada, japan 75 06, 531 (Cl. C07D,
a61K) (1975).
[10] D.R.Schridhar,C.R.Sarma,R.R.Krishna,IndianJ.Chem.Sect.B.17B(2)(1979)155.
[11] A.D. CaleA.H. Robins, U.S., US 4, 705, 853 (Cl. 540-490; C07D281/08) (1987).
[12] Y. Kaneko, Jpn. Kokai Tokyo Koho JP 63 95, 442[88 95, 442](Cl. G03C7/38)
(1988).
[19] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[20] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[21] HyperChem 7.2 for Windows, Hypercube, Inc. USA, 2002.